# Extensions 1→N→G→Q→1 with N=C2×D52 and Q=C2

Direct product G=N×Q with N=C2×D52 and Q=C2
dρLabelID
C22×D5240C2^2xD5^2400,218

Semidirect products G=N:Q with N=C2×D52 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D52)⋊1C2 = D5×D20φ: C2/C1C2 ⊆ Out C2×D52404+(C2xD5^2):1C2400,170
(C2×D52)⋊2C2 = C20⋊D10φ: C2/C1C2 ⊆ Out C2×D52404(C2xD5^2):2C2400,171
(C2×D52)⋊3C2 = D5×C5⋊D4φ: C2/C1C2 ⊆ Out C2×D52404(C2xD5^2):3C2400,179
(C2×D52)⋊4C2 = D10⋊D10φ: C2/C1C2 ⊆ Out C2×D52204+(C2xD5^2):4C2400,180
(C2×D52)⋊5C2 = C2×D5≀C2φ: C2/C1C2 ⊆ Out C2×D52204+(C2xD5^2):5C2400,211

Non-split extensions G=N.Q with N=C2×D52 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D52).1C2 = D5.D20φ: C2/C1C2 ⊆ Out C2×D52408+(C2xD5^2).1C2400,118
(C2×D52).2C2 = D10⋊F5φ: C2/C1C2 ⊆ Out C2×D52208+(C2xD5^2).2C2400,125
(C2×D52).3C2 = D52⋊C4φ: C2/C1C2 ⊆ Out C2×D52204+(C2xD5^2).3C2400,129
(C2×D52).4C2 = C2×D5×F5φ: C2/C1C2 ⊆ Out C2×D52408+(C2xD5^2).4C2400,209
(C2×D52).5C2 = C2×D5⋊F5φ: C2/C1C2 ⊆ Out C2×D52208+(C2xD5^2).5C2400,210
(C2×D52).6C2 = C4×D52φ: trivial image404(C2xD5^2).6C2400,169

׿
×
𝔽