direct product, metabelian, supersoluble, monomial
Aliases: D5×C5⋊D4, D10⋊6D10, Dic5⋊1D10, C102⋊1C22, C5⋊5(D4×D5), C22⋊1D52, (C5×D5)⋊2D4, C52⋊6(C2×D4), (C2×C10)⋊1D10, C5⋊D20⋊5C2, (D5×Dic5)⋊3C2, (C22×D5)⋊3D5, C52⋊2D4⋊4C2, C52⋊7D4⋊2C2, C52⋊6C4⋊C22, (D5×C10)⋊3C22, (C5×C10).17C23, (C5×Dic5)⋊1C22, C10.17(C22×D5), (C2×D52)⋊3C2, (D5×C2×C10)⋊3C2, C5⋊2(C2×C5⋊D4), C2.17(C2×D52), (C5×C5⋊D4)⋊3C2, (C2×C5⋊D5)⋊2C22, SmallGroup(400,179)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D5×C5⋊D4
G = < a,b,c,d,e | a5=b2=c5=d4=e2=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=ece=c-1, ede=d-1 >
Subgroups: 836 in 124 conjugacy classes, 36 normal (32 characteristic)
C1, C2, C2, C4, C22, C22, C5, C5, C2×C4, D4, C23, D5, D5, C10, C10, C2×D4, Dic5, Dic5, C20, D10, D10, C2×C10, C2×C10, C52, C4×D5, D20, C2×Dic5, C5⋊D4, C5⋊D4, C5×D4, C22×D5, C22×D5, C22×C10, C5×D5, C5×D5, C5⋊D5, C5×C10, C5×C10, D4×D5, C2×C5⋊D4, C5×Dic5, C52⋊6C4, D52, D5×C10, D5×C10, C2×C5⋊D5, C102, D5×Dic5, C52⋊2D4, C5⋊D20, C5×C5⋊D4, C52⋊7D4, C2×D52, D5×C2×C10, D5×C5⋊D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C5⋊D4, C22×D5, D4×D5, C2×C5⋊D4, D52, C2×D52, D5×C5⋊D4
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 23)(7 22)(8 21)(9 25)(10 24)(11 38)(12 37)(13 36)(14 40)(15 39)(16 33)(17 32)(18 31)(19 35)(20 34)
(1 3 5 2 4)(6 8 10 7 9)(11 14 12 15 13)(16 19 17 20 18)(21 24 22 25 23)(26 29 27 30 28)(31 33 35 32 34)(36 38 40 37 39)
(1 19 9 14)(2 20 10 15)(3 16 6 11)(4 17 7 12)(5 18 8 13)(21 36 26 31)(22 37 27 32)(23 38 28 33)(24 39 29 34)(25 40 30 35)
(1 14)(2 15)(3 11)(4 12)(5 13)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
G:=sub<Sym(40)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,30)(2,29)(3,28)(4,27)(5,26)(6,23)(7,22)(8,21)(9,25)(10,24)(11,38)(12,37)(13,36)(14,40)(15,39)(16,33)(17,32)(18,31)(19,35)(20,34), (1,3,5,2,4)(6,8,10,7,9)(11,14,12,15,13)(16,19,17,20,18)(21,24,22,25,23)(26,29,27,30,28)(31,33,35,32,34)(36,38,40,37,39), (1,19,9,14)(2,20,10,15)(3,16,6,11)(4,17,7,12)(5,18,8,13)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35), (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,30)(2,29)(3,28)(4,27)(5,26)(6,23)(7,22)(8,21)(9,25)(10,24)(11,38)(12,37)(13,36)(14,40)(15,39)(16,33)(17,32)(18,31)(19,35)(20,34), (1,3,5,2,4)(6,8,10,7,9)(11,14,12,15,13)(16,19,17,20,18)(21,24,22,25,23)(26,29,27,30,28)(31,33,35,32,34)(36,38,40,37,39), (1,19,9,14)(2,20,10,15)(3,16,6,11)(4,17,7,12)(5,18,8,13)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35), (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,23),(7,22),(8,21),(9,25),(10,24),(11,38),(12,37),(13,36),(14,40),(15,39),(16,33),(17,32),(18,31),(19,35),(20,34)], [(1,3,5,2,4),(6,8,10,7,9),(11,14,12,15,13),(16,19,17,20,18),(21,24,22,25,23),(26,29,27,30,28),(31,33,35,32,34),(36,38,40,37,39)], [(1,19,9,14),(2,20,10,15),(3,16,6,11),(4,17,7,12),(5,18,8,13),(21,36,26,31),(22,37,27,32),(23,38,28,33),(24,39,29,34),(25,40,30,35)], [(1,14),(2,15),(3,11),(4,12),(5,13),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)]])
52 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 10A | ··· | 10H | 10I | ··· | 10V | 10W | ··· | 10AD | 10AE | 10AF | 20A | 20B |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 10 | ··· | 10 | 10 | 10 | 20 | 20 |
size | 1 | 1 | 2 | 5 | 5 | 10 | 10 | 50 | 10 | 50 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 10 | ··· | 10 | 20 | 20 | 20 | 20 |
52 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D5 | D5 | D10 | D10 | D10 | C5⋊D4 | D4×D5 | D52 | C2×D52 | D5×C5⋊D4 |
kernel | D5×C5⋊D4 | D5×Dic5 | C52⋊2D4 | C5⋊D20 | C5×C5⋊D4 | C52⋊7D4 | C2×D52 | D5×C2×C10 | C5×D5 | C5⋊D4 | C22×D5 | Dic5 | D10 | C2×C10 | D5 | C5 | C22 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 6 | 4 | 8 | 2 | 4 | 4 | 8 |
Matrix representation of D5×C5⋊D4 ►in GL4(𝔽41) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 40 |
0 | 0 | 1 | 34 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 34 |
0 | 0 | 0 | 40 |
16 | 0 | 0 | 0 |
0 | 18 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 25 | 0 | 0 |
18 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 25 | 0 | 0 |
23 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,0,1,0,0,40,34],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,34,40],[16,0,0,0,0,18,0,0,0,0,1,0,0,0,0,1],[0,18,0,0,25,0,0,0,0,0,1,0,0,0,0,1],[0,23,0,0,25,0,0,0,0,0,1,0,0,0,0,1] >;
D5×C5⋊D4 in GAP, Magma, Sage, TeX
D_5\times C_5\rtimes D_4
% in TeX
G:=Group("D5xC5:D4");
// GroupNames label
G:=SmallGroup(400,179);
// by ID
G=gap.SmallGroup(400,179);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,-5,116,970,11525]);
// Polycyclic
G:=Group<a,b,c,d,e|a^5=b^2=c^5=d^4=e^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations