direct product, non-abelian, soluble, monomial
Aliases: C2×D5≀C2, C5⋊D5⋊D4, (C5×C10)⋊D4, D52⋊C22, C52⋊(C2×D4), C5⋊D5.3C23, C52⋊C4⋊2C22, (C2×D52)⋊5C2, (C2×C52⋊C4)⋊5C2, (C2×C5⋊D5).10C22, SmallGroup(400,211)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C52 — C5⋊D5 — C2×D5≀C2 |
C1 — C52 — C5⋊D5 — D52 — D5≀C2 — C2×D5≀C2 |
C52 — C5⋊D5 — C2×D5≀C2 |
Generators and relations for C2×D5≀C2
G = < a,b,c,d,e | a2=b5=c5=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd-1=ece=b2, ebe=dcd-1=c3, ede=d-1 >
Subgroups: 926 in 94 conjugacy classes, 21 normal (9 characteristic)
C1, C2, C2, C4, C22, C5, C2×C4, D4, C23, D5, C10, C2×D4, F5, D10, C2×C10, C52, C2×F5, C22×D5, C5×D5, C5⋊D5, C5×C10, C52⋊C4, D52, D52, D5×C10, C2×C5⋊D5, D5≀C2, C2×C52⋊C4, C2×D52, C2×D5≀C2
Quotients: C1, C2, C22, D4, C23, C2×D4, D5≀C2, C2×D5≀C2
Character table of C2×D5≀C2
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 5A | 5B | 5C | 5D | 5E | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 10M | |
size | 1 | 1 | 10 | 10 | 10 | 10 | 25 | 25 | 50 | 50 | 4 | 4 | 4 | 4 | 8 | 4 | 4 | 4 | 4 | 8 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 4 | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 3-√5/2 | 3+√5/2 | -1+√5 | -1-√5 | -1 | -1+√5 | 3-√5/2 | -1-√5 | 3+√5/2 | -1 | -1+√5/2 | 0 | 0 | -1-√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5≀C2 |
ρ12 | 4 | 4 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 3+√5/2 | 3-√5/2 | -1-√5 | -1+√5 | -1 | -1-√5 | 3+√5/2 | -1+√5 | 3-√5/2 | -1 | 1+√5/2 | 0 | 0 | 1-√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | orthogonal lifted from D5≀C2 |
ρ13 | 4 | 4 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 3+√5/2 | 3-√5/2 | -1-√5 | -1+√5 | -1 | -1-√5 | 3+√5/2 | -1+√5 | 3-√5/2 | -1 | -1-√5/2 | 0 | 0 | -1+√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5≀C2 |
ρ14 | 4 | -4 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 3+√5/2 | 3-√5/2 | -1 | -3-√5/2 | 1-√5 | -3+√5/2 | 1+√5 | 1 | 0 | 1+√5/2 | 1-√5/2 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | orthogonal faithful |
ρ15 | 4 | -4 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 3-√5/2 | 3+√5/2 | -1+√5 | -1-√5 | -1 | 1-√5 | -3+√5/2 | 1+√5 | -3-√5/2 | 1 | -1+√5/2 | 0 | 0 | 1+√5/2 | 0 | 0 | 1-√5/2 | -1-√5/2 | orthogonal faithful |
ρ16 | 4 | 4 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 3+√5/2 | 3-√5/2 | -1 | 3+√5/2 | -1+√5 | 3-√5/2 | -1-√5 | -1 | 0 | -1-√5/2 | -1+√5/2 | 0 | -1-√5/2 | -1+√5/2 | 0 | 0 | orthogonal lifted from D5≀C2 |
ρ17 | 4 | 4 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 3-√5/2 | 3+√5/2 | -1 | 3-√5/2 | -1-√5 | 3+√5/2 | -1+√5 | -1 | 0 | -1+√5/2 | -1-√5/2 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | orthogonal lifted from D5≀C2 |
ρ18 | 4 | -4 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 3-√5/2 | 3+√5/2 | -1 | -3+√5/2 | 1+√5 | -3-√5/2 | 1-√5 | 1 | 0 | -1+√5/2 | -1-√5/2 | 0 | 1-√5/2 | 1+√5/2 | 0 | 0 | orthogonal faithful |
ρ19 | 4 | -4 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 3+√5/2 | 3-√5/2 | -1 | -3-√5/2 | 1-√5 | -3+√5/2 | 1+√5 | 1 | 0 | -1-√5/2 | -1+√5/2 | 0 | 1+√5/2 | 1-√5/2 | 0 | 0 | orthogonal faithful |
ρ20 | 4 | 4 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 3-√5/2 | 3+√5/2 | -1 | 3-√5/2 | -1-√5 | 3+√5/2 | -1+√5 | -1 | 0 | 1-√5/2 | 1+√5/2 | 0 | 1-√5/2 | 1+√5/2 | 0 | 0 | orthogonal lifted from D5≀C2 |
ρ21 | 4 | -4 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 3+√5/2 | 3-√5/2 | -1-√5 | -1+√5 | -1 | 1+√5 | -3-√5/2 | 1-√5 | -3+√5/2 | 1 | -1-√5/2 | 0 | 0 | 1-√5/2 | 0 | 0 | 1+√5/2 | -1+√5/2 | orthogonal faithful |
ρ22 | 4 | 4 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 3+√5/2 | 3-√5/2 | -1 | 3+√5/2 | -1+√5 | 3-√5/2 | -1-√5 | -1 | 0 | 1+√5/2 | 1-√5/2 | 0 | 1+√5/2 | 1-√5/2 | 0 | 0 | orthogonal lifted from D5≀C2 |
ρ23 | 4 | -4 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 3-√5/2 | 3+√5/2 | -1 | -3+√5/2 | 1+√5 | -3-√5/2 | 1-√5 | 1 | 0 | 1-√5/2 | 1+√5/2 | 0 | -1+√5/2 | -1-√5/2 | 0 | 0 | orthogonal faithful |
ρ24 | 4 | -4 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 3-√5/2 | 3+√5/2 | -1+√5 | -1-√5 | -1 | 1-√5 | -3+√5/2 | 1+√5 | -3-√5/2 | 1 | 1-√5/2 | 0 | 0 | -1-√5/2 | 0 | 0 | -1+√5/2 | 1+√5/2 | orthogonal faithful |
ρ25 | 4 | -4 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 3+√5/2 | 3-√5/2 | -1-√5 | -1+√5 | -1 | 1+√5 | -3-√5/2 | 1-√5 | -3+√5/2 | 1 | 1+√5/2 | 0 | 0 | -1+√5/2 | 0 | 0 | -1-√5/2 | 1-√5/2 | orthogonal faithful |
ρ26 | 4 | 4 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 3-√5/2 | 3+√5/2 | -1+√5 | -1-√5 | -1 | -1+√5 | 3-√5/2 | -1-√5 | 3+√5/2 | -1 | 1-√5/2 | 0 | 0 | 1+√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | orthogonal lifted from D5≀C2 |
ρ27 | 8 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 3 | 2 | 2 | 2 | 2 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ28 | 8 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 3 | -2 | -2 | -2 | -2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D5≀C2 |
(1 7)(2 8)(3 9)(4 10)(5 6)(11 19)(12 20)(13 16)(14 17)(15 18)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(1 4 2 5 3)(6 9 7 10 8)(11 13 15 12 14)(16 18 20 17 19)
(1 11 7 19)(2 14 6 16)(3 12 10 18)(4 15 9 20)(5 13 8 17)
(2 5)(3 4)(6 8)(9 10)(11 19)(12 20)(13 16)(14 17)(15 18)
G:=sub<Sym(20)| (1,7)(2,8)(3,9)(4,10)(5,6)(11,19)(12,20)(13,16)(14,17)(15,18), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,4,2,5,3)(6,9,7,10,8)(11,13,15,12,14)(16,18,20,17,19), (1,11,7,19)(2,14,6,16)(3,12,10,18)(4,15,9,20)(5,13,8,17), (2,5)(3,4)(6,8)(9,10)(11,19)(12,20)(13,16)(14,17)(15,18)>;
G:=Group( (1,7)(2,8)(3,9)(4,10)(5,6)(11,19)(12,20)(13,16)(14,17)(15,18), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,4,2,5,3)(6,9,7,10,8)(11,13,15,12,14)(16,18,20,17,19), (1,11,7,19)(2,14,6,16)(3,12,10,18)(4,15,9,20)(5,13,8,17), (2,5)(3,4)(6,8)(9,10)(11,19)(12,20)(13,16)(14,17)(15,18) );
G=PermutationGroup([[(1,7),(2,8),(3,9),(4,10),(5,6),(11,19),(12,20),(13,16),(14,17),(15,18)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(1,4,2,5,3),(6,9,7,10,8),(11,13,15,12,14),(16,18,20,17,19)], [(1,11,7,19),(2,14,6,16),(3,12,10,18),(4,15,9,20),(5,13,8,17)], [(2,5),(3,4),(6,8),(9,10),(11,19),(12,20),(13,16),(14,17),(15,18)]])
G:=TransitiveGroup(20,92);
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)
(11 12 13 14 15)(16 17 18 19 20)
(1 2 3 4 5)(6 7 8 9 10)
(1 6)(2 8 5 9)(3 10 4 7)(11 16)(12 19 15 18)(13 17 14 20)
(1 16)(2 18)(3 20)(4 17)(5 19)(6 11)(7 13)(8 15)(9 12)(10 14)
G:=sub<Sym(20)| (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (11,12,13,14,15)(16,17,18,19,20), (1,2,3,4,5)(6,7,8,9,10), (1,6)(2,8,5,9)(3,10,4,7)(11,16)(12,19,15,18)(13,17,14,20), (1,16)(2,18)(3,20)(4,17)(5,19)(6,11)(7,13)(8,15)(9,12)(10,14)>;
G:=Group( (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (11,12,13,14,15)(16,17,18,19,20), (1,2,3,4,5)(6,7,8,9,10), (1,6)(2,8,5,9)(3,10,4,7)(11,16)(12,19,15,18)(13,17,14,20), (1,16)(2,18)(3,20)(4,17)(5,19)(6,11)(7,13)(8,15)(9,12)(10,14) );
G=PermutationGroup([[(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20)], [(11,12,13,14,15),(16,17,18,19,20)], [(1,2,3,4,5),(6,7,8,9,10)], [(1,6),(2,8,5,9),(3,10,4,7),(11,16),(12,19,15,18),(13,17,14,20)], [(1,16),(2,18),(3,20),(4,17),(5,19),(6,11),(7,13),(8,15),(9,12),(10,14)]])
G:=TransitiveGroup(20,98);
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(1 2 3 4 5)(6 7 8 9 10)(11 15 14 13 12)(16 20 19 18 17)
(1 12)(2 15 5 14)(3 13 4 11)(6 17)(7 20 10 19)(8 18 9 16)
(1 12)(2 14)(3 11)(4 13)(5 15)(6 17)(7 19)(8 16)(9 18)(10 20)
G:=sub<Sym(20)| (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,2,3,4,5)(6,7,8,9,10)(11,15,14,13,12)(16,20,19,18,17), (1,12)(2,15,5,14)(3,13,4,11)(6,17)(7,20,10,19)(8,18,9,16), (1,12)(2,14)(3,11)(4,13)(5,15)(6,17)(7,19)(8,16)(9,18)(10,20)>;
G:=Group( (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,2,3,4,5)(6,7,8,9,10)(11,15,14,13,12)(16,20,19,18,17), (1,12)(2,15,5,14)(3,13,4,11)(6,17)(7,20,10,19)(8,18,9,16), (1,12)(2,14)(3,11)(4,13)(5,15)(6,17)(7,19)(8,16)(9,18)(10,20) );
G=PermutationGroup([[(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(1,2,3,4,5),(6,7,8,9,10),(11,15,14,13,12),(16,20,19,18,17)], [(1,12),(2,15,5,14),(3,13,4,11),(6,17),(7,20,10,19),(8,18,9,16)], [(1,12),(2,14),(3,11),(4,13),(5,15),(6,17),(7,19),(8,16),(9,18),(10,20)]])
G:=TransitiveGroup(20,100);
Matrix representation of C2×D5≀C2 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 1 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 35 | 6 |
0 | 0 | 0 | 0 | 35 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 40 | 0 | 0 |
0 | 0 | 1 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 40 | 35 |
0 | 0 | 0 | 0 | 6 | 35 |
0 | 40 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 6 | 35 | 0 | 0 |
0 | 0 | 40 | 35 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,40,6,0,0,0,0,0,0,35,35,0,0,0,0,6,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,40,6,0,0,0,0,0,0,40,6,0,0,0,0,35,35],[0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,0,6,40,0,0,0,0,35,35,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;
C2×D5≀C2 in GAP, Magma, Sage, TeX
C_2\times D_5\wr C_2
% in TeX
G:=Group("C2xD5wrC2");
// GroupNames label
G:=SmallGroup(400,211);
// by ID
G=gap.SmallGroup(400,211);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-5,5,121,7204,1210,262,1157,299,1463]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^5=c^5=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d^-1=e*c*e=b^2,e*b*e=d*c*d^-1=c^3,e*d*e=d^-1>;
// generators/relations
Export