Extensions 1→N→G→Q→1 with N=C14 and Q=C2×C14

Direct product G=N×Q with N=C14 and Q=C2×C14

Semidirect products G=N:Q with N=C14 and Q=C2×C14
extensionφ:Q→Aut NdρLabelID
C14⋊(C2×C14) = D7×C2×C14φ: C2×C14/C14C2 ⊆ Aut C1456C14:(C2xC14)392,42

Non-split extensions G=N.Q with N=C14 and Q=C2×C14
extensionφ:Q→Aut NdρLabelID
C14.1(C2×C14) = C7×Dic14φ: C2×C14/C14C2 ⊆ Aut C14562C14.1(C2xC14)392,23
C14.2(C2×C14) = D7×C28φ: C2×C14/C14C2 ⊆ Aut C14562C14.2(C2xC14)392,24
C14.3(C2×C14) = C7×D28φ: C2×C14/C14C2 ⊆ Aut C14562C14.3(C2xC14)392,25
C14.4(C2×C14) = C14×Dic7φ: C2×C14/C14C2 ⊆ Aut C1456C14.4(C2xC14)392,26
C14.5(C2×C14) = C7×C7⋊D4φ: C2×C14/C14C2 ⊆ Aut C14282C14.5(C2xC14)392,27
C14.6(C2×C14) = D4×C49central extension (φ=1)1962C14.6(C2xC14)392,9
C14.7(C2×C14) = Q8×C49central extension (φ=1)3922C14.7(C2xC14)392,10
C14.8(C2×C14) = D4×C72central extension (φ=1)196C14.8(C2xC14)392,34
C14.9(C2×C14) = Q8×C72central extension (φ=1)392C14.9(C2xC14)392,35