Copied to
clipboard

G = C7xDic14order 392 = 23·72

Direct product of C7 and Dic14

direct product, metacyclic, supersoluble, monomial

Aliases: C7xDic14, C72:3Q8, C28.7D7, C28.1C14, Dic7.C14, C14.17D14, C7:(C7xQ8), C4.(C7xD7), (C7xC28).2C2, C2.3(D7xC14), C14.1(C2xC14), (C7xC14).6C22, (C7xDic7).2C2, SmallGroup(392,23)

Series: Derived Chief Lower central Upper central

C1C14 — C7xDic14
C1C7C14C7xC14C7xDic7 — C7xDic14
C7C14 — C7xDic14
C1C14C28

Generators and relations for C7xDic14
 G = < a,b,c | a7=b28=1, c2=b14, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 78 in 33 conjugacy classes, 18 normal (14 characteristic)
Quotients: C1, C2, C22, C7, Q8, D7, C14, D14, C2xC14, Dic14, C7xQ8, C7xD7, D7xC14, C7xDic14
2C7
2C7
2C7
7C4
7C4
2C14
2C14
2C14
7Q8
2C28
2C28
2C28
7C28
7C28
7C7xQ8

Smallest permutation representation of C7xDic14
On 56 points
Generators in S56
(1 5 9 13 17 21 25)(2 6 10 14 18 22 26)(3 7 11 15 19 23 27)(4 8 12 16 20 24 28)(29 53 49 45 41 37 33)(30 54 50 46 42 38 34)(31 55 51 47 43 39 35)(32 56 52 48 44 40 36)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 50 15 36)(2 49 16 35)(3 48 17 34)(4 47 18 33)(5 46 19 32)(6 45 20 31)(7 44 21 30)(8 43 22 29)(9 42 23 56)(10 41 24 55)(11 40 25 54)(12 39 26 53)(13 38 27 52)(14 37 28 51)

G:=sub<Sym(56)| (1,5,9,13,17,21,25)(2,6,10,14,18,22,26)(3,7,11,15,19,23,27)(4,8,12,16,20,24,28)(29,53,49,45,41,37,33)(30,54,50,46,42,38,34)(31,55,51,47,43,39,35)(32,56,52,48,44,40,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,50,15,36)(2,49,16,35)(3,48,17,34)(4,47,18,33)(5,46,19,32)(6,45,20,31)(7,44,21,30)(8,43,22,29)(9,42,23,56)(10,41,24,55)(11,40,25,54)(12,39,26,53)(13,38,27,52)(14,37,28,51)>;

G:=Group( (1,5,9,13,17,21,25)(2,6,10,14,18,22,26)(3,7,11,15,19,23,27)(4,8,12,16,20,24,28)(29,53,49,45,41,37,33)(30,54,50,46,42,38,34)(31,55,51,47,43,39,35)(32,56,52,48,44,40,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,50,15,36)(2,49,16,35)(3,48,17,34)(4,47,18,33)(5,46,19,32)(6,45,20,31)(7,44,21,30)(8,43,22,29)(9,42,23,56)(10,41,24,55)(11,40,25,54)(12,39,26,53)(13,38,27,52)(14,37,28,51) );

G=PermutationGroup([[(1,5,9,13,17,21,25),(2,6,10,14,18,22,26),(3,7,11,15,19,23,27),(4,8,12,16,20,24,28),(29,53,49,45,41,37,33),(30,54,50,46,42,38,34),(31,55,51,47,43,39,35),(32,56,52,48,44,40,36)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,50,15,36),(2,49,16,35),(3,48,17,34),(4,47,18,33),(5,46,19,32),(6,45,20,31),(7,44,21,30),(8,43,22,29),(9,42,23,56),(10,41,24,55),(11,40,25,54),(12,39,26,53),(13,38,27,52),(14,37,28,51)]])

119 conjugacy classes

class 1  2 4A4B4C7A···7F7G···7AA14A···14F14G···14AA28A···28AV28AW···28BH
order124447···77···714···1414···1428···2828···28
size11214141···12···21···12···22···214···14

119 irreducible representations

dim11111122222222
type+++-++-
imageC1C2C2C7C14C14Q8D7D14Dic14C7xQ8C7xD7D7xC14C7xDic14
kernelC7xDic14C7xDic7C7xC28Dic14Dic7C28C72C28C14C7C7C4C2C1
# reps121612613366181836

Matrix representation of C7xDic14 in GL2(F29) generated by

70
07
,
210
018
,
01
280
G:=sub<GL(2,GF(29))| [7,0,0,7],[21,0,0,18],[0,28,1,0] >;

C7xDic14 in GAP, Magma, Sage, TeX

C_7\times {\rm Dic}_{14}
% in TeX

G:=Group("C7xDic14");
// GroupNames label

G:=SmallGroup(392,23);
// by ID

G=gap.SmallGroup(392,23);
# by ID

G:=PCGroup([5,-2,-2,-7,-2,-7,140,301,146,8404]);
// Polycyclic

G:=Group<a,b,c|a^7=b^28=1,c^2=b^14,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C7xDic14 in TeX

׿
x
:
Z
F
o
wr
Q
<