Extensions 1→N→G→Q→1 with N=C5xDic5 and Q=C4

Direct product G=NxQ with N=C5xDic5 and Q=C4
dρLabelID
Dic5xC2080Dic5xC20400,83

Semidirect products G=N:Q with N=C5xDic5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5xDic5):1C4 = D5.Dic10φ: C4/C1C4 ⊆ Out C5xDic5808-(C5xDic5):1C4400,119
(C5xDic5):2C4 = Dic5:F5φ: C4/C1C4 ⊆ Out C5xDic5208+(C5xDic5):2C4400,126
(C5xDic5):3C4 = Dic5xF5φ: C4/C1C4 ⊆ Out C5xDic5808-(C5xDic5):3C4400,117
(C5xDic5):4C4 = C52:3C42φ: C4/C1C4 ⊆ Out C5xDic5208+(C5xDic5):4C4400,124
(C5xDic5):5C4 = C20xF5φ: C4/C2C2 ⊆ Out C5xDic5804(C5xDic5):5C4400,137
(C5xDic5):6C4 = Dic5:Dic5φ: C4/C2C2 ⊆ Out C5xDic580(C5xDic5):6C4400,74
(C5xDic5):7C4 = C20:5F5φ: C4/C2C2 ⊆ Out C5xDic5804(C5xDic5):7C4400,145
(C5xDic5):8C4 = Dic52φ: C4/C2C2 ⊆ Out C5xDic580(C5xDic5):8C4400,71
(C5xDic5):9C4 = C4xD5.D5φ: C4/C2C2 ⊆ Out C5xDic5804(C5xDic5):9C4400,144
(C5xDic5):10C4 = C5xC10.D4φ: C4/C2C2 ⊆ Out C5xDic580(C5xDic5):10C4400,84
(C5xDic5):11C4 = C5xC4:F5φ: C4/C2C2 ⊆ Out C5xDic5804(C5xDic5):11C4400,138

Non-split extensions G=N.Q with N=C5xDic5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5xDic5).1C4 = Dic5.F5φ: C4/C1C4 ⊆ Out C5xDic5408+(C5xDic5).1C4400,123
(C5xDic5).2C4 = C52:4M4(2)φ: C4/C1C4 ⊆ Out C5xDic5808-(C5xDic5).2C4400,128
(C5xDic5).3C4 = Dic5.4F5φ: C4/C1C4 ⊆ Out C5xDic5408+(C5xDic5).3C4400,121
(C5xDic5).4C4 = D10.2F5φ: C4/C1C4 ⊆ Out C5xDic5808-(C5xDic5).4C4400,127
(C5xDic5).5C4 = C10xC5:C8φ: C4/C2C2 ⊆ Out C5xDic580(C5xDic5).5C4400,139
(C5xDic5).6C4 = C20.30D10φ: C4/C2C2 ⊆ Out C5xDic5804(C5xDic5).6C4400,62
(C5xDic5).7C4 = C102.C4φ: C4/C2C2 ⊆ Out C5xDic5404(C5xDic5).7C4400,147
(C5xDic5).8C4 = D5xC5:2C8φ: C4/C2C2 ⊆ Out C5xDic5804(C5xDic5).8C4400,60
(C5xDic5).9C4 = C2xC52:3C8φ: C4/C2C2 ⊆ Out C5xDic580(C5xDic5).9C4400,146
(C5xDic5).10C4 = C5xC8:D5φ: C4/C2C2 ⊆ Out C5xDic5802(C5xDic5).10C4400,77
(C5xDic5).11C4 = C5xC22.F5φ: C4/C2C2 ⊆ Out C5xDic5404(C5xDic5).11C4400,140
(C5xDic5).12C4 = D5xC40φ: trivial image802(C5xDic5).12C4400,76

׿
x
:
Z
F
o
wr
Q
<