Copied to
clipboard

G = Dic5xC20order 400 = 24·52

Direct product of C20 and Dic5

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: Dic5xC20, C20:4C20, C52:9C42, C102.16C22, C5:2(C4xC20), (C5xC20):11C4, C2.2(D5xC20), (C2xC20).9C10, (C2xC20).22D5, C10.30(C4xD5), C10.14(C2xC20), (C10xC20).11C2, (C2xC10).40D10, C2.2(C10xDic5), C22.3(D5xC10), (C2xDic5).6C10, C10.26(C2xDic5), (C10xDic5).12C2, (C2xC4).6(C5xD5), (C2xC10).5(C2xC10), (C5xC10).52(C2xC4), SmallGroup(400,83)

Series: Derived Chief Lower central Upper central

C1C5 — Dic5xC20
C1C5C10C2xC10C102C10xDic5 — Dic5xC20
C5 — Dic5xC20
C1C2xC20

Generators and relations for Dic5xC20
 G = < a,b,c | a20=b10=1, c2=b5, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 148 in 76 conjugacy classes, 46 normal (18 characteristic)
C1, C2, C2, C4, C4, C22, C5, C5, C2xC4, C2xC4, C10, C10, C10, C42, Dic5, C20, C20, C2xC10, C2xC10, C52, C2xDic5, C2xC20, C2xC20, C5xC10, C5xC10, C4xDic5, C4xC20, C5xDic5, C5xC20, C102, C10xDic5, C10xC20, Dic5xC20
Quotients: C1, C2, C4, C22, C5, C2xC4, D5, C10, C42, Dic5, C20, D10, C2xC10, C4xD5, C2xDic5, C2xC20, C5xD5, C4xDic5, C4xC20, C5xDic5, D5xC10, D5xC20, C10xDic5, Dic5xC20

Smallest permutation representation of Dic5xC20
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 32 13 24 5 36 17 28 9 40)(2 33 14 25 6 37 18 29 10 21)(3 34 15 26 7 38 19 30 11 22)(4 35 16 27 8 39 20 31 12 23)(41 80 49 68 57 76 45 64 53 72)(42 61 50 69 58 77 46 65 54 73)(43 62 51 70 59 78 47 66 55 74)(44 63 52 71 60 79 48 67 56 75)
(1 53 36 68)(2 54 37 69)(3 55 38 70)(4 56 39 71)(5 57 40 72)(6 58 21 73)(7 59 22 74)(8 60 23 75)(9 41 24 76)(10 42 25 77)(11 43 26 78)(12 44 27 79)(13 45 28 80)(14 46 29 61)(15 47 30 62)(16 48 31 63)(17 49 32 64)(18 50 33 65)(19 51 34 66)(20 52 35 67)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,32,13,24,5,36,17,28,9,40)(2,33,14,25,6,37,18,29,10,21)(3,34,15,26,7,38,19,30,11,22)(4,35,16,27,8,39,20,31,12,23)(41,80,49,68,57,76,45,64,53,72)(42,61,50,69,58,77,46,65,54,73)(43,62,51,70,59,78,47,66,55,74)(44,63,52,71,60,79,48,67,56,75), (1,53,36,68)(2,54,37,69)(3,55,38,70)(4,56,39,71)(5,57,40,72)(6,58,21,73)(7,59,22,74)(8,60,23,75)(9,41,24,76)(10,42,25,77)(11,43,26,78)(12,44,27,79)(13,45,28,80)(14,46,29,61)(15,47,30,62)(16,48,31,63)(17,49,32,64)(18,50,33,65)(19,51,34,66)(20,52,35,67)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,32,13,24,5,36,17,28,9,40)(2,33,14,25,6,37,18,29,10,21)(3,34,15,26,7,38,19,30,11,22)(4,35,16,27,8,39,20,31,12,23)(41,80,49,68,57,76,45,64,53,72)(42,61,50,69,58,77,46,65,54,73)(43,62,51,70,59,78,47,66,55,74)(44,63,52,71,60,79,48,67,56,75), (1,53,36,68)(2,54,37,69)(3,55,38,70)(4,56,39,71)(5,57,40,72)(6,58,21,73)(7,59,22,74)(8,60,23,75)(9,41,24,76)(10,42,25,77)(11,43,26,78)(12,44,27,79)(13,45,28,80)(14,46,29,61)(15,47,30,62)(16,48,31,63)(17,49,32,64)(18,50,33,65)(19,51,34,66)(20,52,35,67) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,32,13,24,5,36,17,28,9,40),(2,33,14,25,6,37,18,29,10,21),(3,34,15,26,7,38,19,30,11,22),(4,35,16,27,8,39,20,31,12,23),(41,80,49,68,57,76,45,64,53,72),(42,61,50,69,58,77,46,65,54,73),(43,62,51,70,59,78,47,66,55,74),(44,63,52,71,60,79,48,67,56,75)], [(1,53,36,68),(2,54,37,69),(3,55,38,70),(4,56,39,71),(5,57,40,72),(6,58,21,73),(7,59,22,74),(8,60,23,75),(9,41,24,76),(10,42,25,77),(11,43,26,78),(12,44,27,79),(13,45,28,80),(14,46,29,61),(15,47,30,62),(16,48,31,63),(17,49,32,64),(18,50,33,65),(19,51,34,66),(20,52,35,67)]])

160 conjugacy classes

class 1 2A2B2C4A4B4C4D4E···4L5A5B5C5D5E···5N10A···10L10M···10AP20A···20P20Q···20BD20BE···20CJ
order122244444···455555···510···1010···1020···2020···2020···20
size111111115···511112···21···12···21···12···25···5

160 irreducible representations

dim111111111122222222
type++++-+
imageC1C2C2C4C4C5C10C10C20C20D5Dic5D10C4xD5C5xD5C5xDic5D5xC10D5xC20
kernelDic5xC20C10xDic5C10xC20C5xDic5C5xC20C4xDic5C2xDic5C2xC20Dic5C20C2xC20C20C2xC10C10C2xC4C4C22C2
# reps1218448432162428816832

Matrix representation of Dic5xC20 in GL3(F41) generated by

1800
080
008
,
4000
0100
0037
,
900
009
0320
G:=sub<GL(3,GF(41))| [18,0,0,0,8,0,0,0,8],[40,0,0,0,10,0,0,0,37],[9,0,0,0,0,32,0,9,0] >;

Dic5xC20 in GAP, Magma, Sage, TeX

{\rm Dic}_5\times C_{20}
% in TeX

G:=Group("Dic5xC20");
// GroupNames label

G:=SmallGroup(400,83);
// by ID

G=gap.SmallGroup(400,83);
# by ID

G:=PCGroup([6,-2,-2,-5,-2,-2,-5,120,247,11525]);
// Polycyclic

G:=Group<a,b,c|a^20=b^10=1,c^2=b^5,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<