extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C52)⋊1C4 = D26.D4 | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 104 | 4+ | (C2xC52):1C4 | 416,74 |
(C2×C52)⋊2C4 = D26.Q8 | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 104 | | (C2xC52):2C4 | 416,81 |
(C2×C52)⋊3C4 = C2×C52⋊C4 | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 104 | | (C2xC52):3C4 | 416,203 |
(C2×C52)⋊4C4 = D26.C23 | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 104 | 4 | (C2xC52):4C4 | 416,204 |
(C2×C52)⋊5C4 = C2×C4×C13⋊C4 | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 104 | | (C2xC52):5C4 | 416,202 |
(C2×C52)⋊6C4 = C23⋊Dic13 | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 104 | 4 | (C2xC52):6C4 | 416,41 |
(C2×C52)⋊7C4 = C13×C23⋊C4 | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 104 | 4 | (C2xC52):7C4 | 416,49 |
(C2×C52)⋊8C4 = C26.10C42 | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52):8C4 | 416,38 |
(C2×C52)⋊9C4 = C13×C2.C42 | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52):9C4 | 416,45 |
(C2×C52)⋊10C4 = C2×C52⋊3C4 | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52):10C4 | 416,146 |
(C2×C52)⋊11C4 = C23.21D26 | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52):11C4 | 416,147 |
(C2×C52)⋊12C4 = C2×C4×Dic13 | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52):12C4 | 416,143 |
(C2×C52)⋊13C4 = C4⋊C4×C26 | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52):13C4 | 416,177 |
(C2×C52)⋊14C4 = C13×C42⋊C2 | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52):14C4 | 416,178 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C52).1C4 = Dic13.D4 | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 208 | 4- | (C2xC52).1C4 | 416,80 |
(C2×C52).2C4 = C26.C42 | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 416 | | (C2xC52).2C4 | 416,77 |
(C2×C52).3C4 = D26⋊C8 | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 208 | | (C2xC52).3C4 | 416,78 |
(C2×C52).4C4 = Dic13⋊C8 | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 416 | | (C2xC52).4C4 | 416,79 |
(C2×C52).5C4 = C52⋊C8 | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 416 | | (C2xC52).5C4 | 416,76 |
(C2×C52).6C4 = C2×C52.C4 | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 208 | | (C2xC52).6C4 | 416,200 |
(C2×C52).7C4 = C52.C8 | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 208 | 4 | (C2xC52).7C4 | 416,73 |
(C2×C52).8C4 = D13⋊M4(2) | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 104 | 4 | (C2xC52).8C4 | 416,201 |
(C2×C52).9C4 = C2×C13⋊C16 | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 416 | | (C2xC52).9C4 | 416,72 |
(C2×C52).10C4 = C4×C13⋊C8 | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 416 | | (C2xC52).10C4 | 416,75 |
(C2×C52).11C4 = C2×D13⋊C8 | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 208 | | (C2xC52).11C4 | 416,199 |
(C2×C52).12C4 = C52.10D4 | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 208 | 4 | (C2xC52).12C4 | 416,43 |
(C2×C52).13C4 = C13×C4.10D4 | φ: C4/C1 → C4 ⊆ Aut C2×C52 | 208 | 4 | (C2xC52).13C4 | 416,51 |
(C2×C52).14C4 = C26.7C42 | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).14C4 | 416,10 |
(C2×C52).15C4 = C52.55D4 | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).15C4 | 416,37 |
(C2×C52).16C4 = C13×C8⋊C4 | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).16C4 | 416,47 |
(C2×C52).17C4 = C13×C22⋊C8 | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).17C4 | 416,48 |
(C2×C52).18C4 = C52⋊3C8 | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).18C4 | 416,11 |
(C2×C52).19C4 = C52.4C8 | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 208 | 2 | (C2xC52).19C4 | 416,19 |
(C2×C52).20C4 = C2×C52.4C4 | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).20C4 | 416,142 |
(C2×C52).21C4 = C4×C13⋊2C8 | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).21C4 | 416,9 |
(C2×C52).22C4 = C2×C13⋊2C16 | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).22C4 | 416,18 |
(C2×C52).23C4 = C22×C13⋊2C8 | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).23C4 | 416,141 |
(C2×C52).24C4 = C13×C4⋊C8 | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 416 | | (C2xC52).24C4 | 416,55 |
(C2×C52).25C4 = C13×M5(2) | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 208 | 2 | (C2xC52).25C4 | 416,60 |
(C2×C52).26C4 = M4(2)×C26 | φ: C4/C2 → C2 ⊆ Aut C2×C52 | 208 | | (C2xC52).26C4 | 416,191 |