# Extensions 1→N→G→Q→1 with N=D4×C13 and Q=C4

Direct product G=N×Q with N=D4×C13 and Q=C4
dρLabelID
D4×C52208D4xC52416,179

Semidirect products G=N:Q with N=D4×C13 and Q=C4
extensionφ:Q→Out NdρLabelID
(D4×C13)⋊1C4 = D521C4φ: C4/C1C4 ⊆ Out D4×C131048+(D4xC13):1C4416,82
(D4×C13)⋊2C4 = Dic26⋊C4φ: C4/C1C4 ⊆ Out D4×C131048-(D4xC13):2C4416,83
(D4×C13)⋊3C4 = D4×C13⋊C4φ: C4/C1C4 ⊆ Out D4×C13528+(D4xC13):3C4416,206
(D4×C13)⋊4C4 = D4⋊Dic13φ: C4/C2C2 ⊆ Out D4×C13208(D4xC13):4C4416,39
(D4×C13)⋊5C4 = C52.56D4φ: C4/C2C2 ⊆ Out D4×C131044(D4xC13):5C4416,44
(D4×C13)⋊6C4 = D4×Dic13φ: C4/C2C2 ⊆ Out D4×C13208(D4xC13):6C4416,155
(D4×C13)⋊7C4 = C13×D4⋊C4φ: C4/C2C2 ⊆ Out D4×C13208(D4xC13):7C4416,52
(D4×C13)⋊8C4 = C13×C4≀C2φ: C4/C2C2 ⊆ Out D4×C131042(D4xC13):8C4416,54

Non-split extensions G=N.Q with N=D4×C13 and Q=C4
extensionφ:Q→Out NdρLabelID
(D4×C13).C4 = Dic26.C4φ: C4/C1C4 ⊆ Out D4×C132088-(D4xC13).C4416,205
(D4×C13).2C4 = D4.Dic13φ: C4/C2C2 ⊆ Out D4×C132084(D4xC13).2C4416,169
(D4×C13).3C4 = C13×C8○D4φ: trivial image2082(D4xC13).3C4416,192

׿
×
𝔽