Copied to
clipboard

G = C13xC4wrC2order 416 = 25·13

Direct product of C13 and C4wrC2

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C13xC4wrC2, D4:2C52, Q8:2C52, C42:3C26, C52.66D4, M4(2):4C26, (C4xC52):10C2, (D4xC13):8C4, C4.3(C2xC52), (Q8xC13):8C4, C52.51(C2xC4), C4oD4.1C26, C4.17(D4xC13), (C2xC26).22D4, C22.3(D4xC13), C26.37(C22:C4), (C13xM4(2)):10C2, (C2xC52).116C22, (C2xC4).19(C2xC26), (C13xC4oD4).4C2, C2.8(C13xC22:C4), SmallGroup(416,54)

Series: Derived Chief Lower central Upper central

C1C4 — C13xC4wrC2
C1C2C4C2xC4C2xC52C13xM4(2) — C13xC4wrC2
C1C2C4 — C13xC4wrC2
C1C52C2xC52 — C13xC4wrC2

Generators and relations for C13xC4wrC2
 G = < a,b,c,d | a13=b4=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, dcd-1=b-1c >

Subgroups: 68 in 44 conjugacy classes, 24 normal (all characteristic)
Quotients: C1, C2, C4, C22, C2xC4, D4, C13, C22:C4, C26, C4wrC2, C52, C2xC26, C2xC52, D4xC13, C13xC22:C4, C13xC4wrC2
2C2
4C2
2C4
2C22
2C4
2C4
2C26
4C26
2D4
2C2xC4
2C2xC4
2C8
2C2xC26
2C52
2C52
2C52
2C2xC52
2C104
2D4xC13
2C2xC52

Smallest permutation representation of C13xC4wrC2
On 104 points
Generators in S104
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 39 22 86)(2 27 23 87)(3 28 24 88)(4 29 25 89)(5 30 26 90)(6 31 14 91)(7 32 15 79)(8 33 16 80)(9 34 17 81)(10 35 18 82)(11 36 19 83)(12 37 20 84)(13 38 21 85)(40 55 70 95)(41 56 71 96)(42 57 72 97)(43 58 73 98)(44 59 74 99)(45 60 75 100)(46 61 76 101)(47 62 77 102)(48 63 78 103)(49 64 66 104)(50 65 67 92)(51 53 68 93)(52 54 69 94)
(1 96)(2 97)(3 98)(4 99)(5 100)(6 101)(7 102)(8 103)(9 104)(10 92)(11 93)(12 94)(13 95)(14 61)(15 62)(16 63)(17 64)(18 65)(19 53)(20 54)(21 55)(22 56)(23 57)(24 58)(25 59)(26 60)(27 72)(28 73)(29 74)(30 75)(31 76)(32 77)(33 78)(34 66)(35 67)(36 68)(37 69)(38 70)(39 71)(40 85)(41 86)(42 87)(43 88)(44 89)(45 90)(46 91)(47 79)(48 80)(49 81)(50 82)(51 83)(52 84)
(1 86 22 39)(2 87 23 27)(3 88 24 28)(4 89 25 29)(5 90 26 30)(6 91 14 31)(7 79 15 32)(8 80 16 33)(9 81 17 34)(10 82 18 35)(11 83 19 36)(12 84 20 37)(13 85 21 38)

G:=sub<Sym(104)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,39,22,86)(2,27,23,87)(3,28,24,88)(4,29,25,89)(5,30,26,90)(6,31,14,91)(7,32,15,79)(8,33,16,80)(9,34,17,81)(10,35,18,82)(11,36,19,83)(12,37,20,84)(13,38,21,85)(40,55,70,95)(41,56,71,96)(42,57,72,97)(43,58,73,98)(44,59,74,99)(45,60,75,100)(46,61,76,101)(47,62,77,102)(48,63,78,103)(49,64,66,104)(50,65,67,92)(51,53,68,93)(52,54,69,94), (1,96)(2,97)(3,98)(4,99)(5,100)(6,101)(7,102)(8,103)(9,104)(10,92)(11,93)(12,94)(13,95)(14,61)(15,62)(16,63)(17,64)(18,65)(19,53)(20,54)(21,55)(22,56)(23,57)(24,58)(25,59)(26,60)(27,72)(28,73)(29,74)(30,75)(31,76)(32,77)(33,78)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90)(46,91)(47,79)(48,80)(49,81)(50,82)(51,83)(52,84), (1,86,22,39)(2,87,23,27)(3,88,24,28)(4,89,25,29)(5,90,26,30)(6,91,14,31)(7,79,15,32)(8,80,16,33)(9,81,17,34)(10,82,18,35)(11,83,19,36)(12,84,20,37)(13,85,21,38)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,39,22,86)(2,27,23,87)(3,28,24,88)(4,29,25,89)(5,30,26,90)(6,31,14,91)(7,32,15,79)(8,33,16,80)(9,34,17,81)(10,35,18,82)(11,36,19,83)(12,37,20,84)(13,38,21,85)(40,55,70,95)(41,56,71,96)(42,57,72,97)(43,58,73,98)(44,59,74,99)(45,60,75,100)(46,61,76,101)(47,62,77,102)(48,63,78,103)(49,64,66,104)(50,65,67,92)(51,53,68,93)(52,54,69,94), (1,96)(2,97)(3,98)(4,99)(5,100)(6,101)(7,102)(8,103)(9,104)(10,92)(11,93)(12,94)(13,95)(14,61)(15,62)(16,63)(17,64)(18,65)(19,53)(20,54)(21,55)(22,56)(23,57)(24,58)(25,59)(26,60)(27,72)(28,73)(29,74)(30,75)(31,76)(32,77)(33,78)(34,66)(35,67)(36,68)(37,69)(38,70)(39,71)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90)(46,91)(47,79)(48,80)(49,81)(50,82)(51,83)(52,84), (1,86,22,39)(2,87,23,27)(3,88,24,28)(4,89,25,29)(5,90,26,30)(6,91,14,31)(7,79,15,32)(8,80,16,33)(9,81,17,34)(10,82,18,35)(11,83,19,36)(12,84,20,37)(13,85,21,38) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,39,22,86),(2,27,23,87),(3,28,24,88),(4,29,25,89),(5,30,26,90),(6,31,14,91),(7,32,15,79),(8,33,16,80),(9,34,17,81),(10,35,18,82),(11,36,19,83),(12,37,20,84),(13,38,21,85),(40,55,70,95),(41,56,71,96),(42,57,72,97),(43,58,73,98),(44,59,74,99),(45,60,75,100),(46,61,76,101),(47,62,77,102),(48,63,78,103),(49,64,66,104),(50,65,67,92),(51,53,68,93),(52,54,69,94)], [(1,96),(2,97),(3,98),(4,99),(5,100),(6,101),(7,102),(8,103),(9,104),(10,92),(11,93),(12,94),(13,95),(14,61),(15,62),(16,63),(17,64),(18,65),(19,53),(20,54),(21,55),(22,56),(23,57),(24,58),(25,59),(26,60),(27,72),(28,73),(29,74),(30,75),(31,76),(32,77),(33,78),(34,66),(35,67),(36,68),(37,69),(38,70),(39,71),(40,85),(41,86),(42,87),(43,88),(44,89),(45,90),(46,91),(47,79),(48,80),(49,81),(50,82),(51,83),(52,84)], [(1,86,22,39),(2,87,23,27),(3,88,24,28),(4,89,25,29),(5,90,26,30),(6,91,14,31),(7,79,15,32),(8,80,16,33),(9,81,17,34),(10,82,18,35),(11,83,19,36),(12,84,20,37),(13,85,21,38)]])

182 conjugacy classes

class 1 2A2B2C4A4B4C···4G4H8A8B13A···13L26A···26L26M···26X26Y···26AJ52A···52X52Y···52CF52CG···52CR104A···104X
order1222444···448813···1326···2626···2626···2652···5252···5252···52104···104
size1124112···24441···11···12···24···41···12···24···44···4

182 irreducible representations

dim111111111111222222
type++++++
imageC1C2C2C2C4C4C13C26C26C26C52C52D4D4C4wrC2D4xC13D4xC13C13xC4wrC2
kernelC13xC4wrC2C4xC52C13xM4(2)C13xC4oD4D4xC13Q8xC13C4wrC2C42M4(2)C4oD4D4Q8C52C2xC26C13C4C22C1
# reps111122121212122424114121248

Matrix representation of C13xC4wrC2 in GL2(F313) generated by

2770
0277
,
2880
025
,
025
2880
,
250
01
G:=sub<GL(2,GF(313))| [277,0,0,277],[288,0,0,25],[0,288,25,0],[25,0,0,1] >;

C13xC4wrC2 in GAP, Magma, Sage, TeX

C_{13}\times C_4\wr C_2
% in TeX

G:=Group("C13xC4wrC2");
// GroupNames label

G:=SmallGroup(416,54);
// by ID

G=gap.SmallGroup(416,54);
# by ID

G:=PCGroup([6,-2,-2,-13,-2,-2,-2,624,649,6243,3129,117,88]);
// Polycyclic

G:=Group<a,b,c,d|a^13=b^4=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,d*c*d^-1=b^-1*c>;
// generators/relations

Export

Subgroup lattice of C13xC4wrC2 in TeX

׿
x
:
Z
F
o
wr
Q
<