Extensions 1→N→G→Q→1 with N=Q8xC13 and Q=C4

Direct product G=NxQ with N=Q8xC13 and Q=C4
dρLabelID
Q8xC52416Q8xC52416,180

Semidirect products G=N:Q with N=Q8xC13 and Q=C4
extensionφ:Q→Out NdρLabelID
(Q8xC13):1C4 = D13.Q16φ: C4/C1C4 ⊆ Out Q8xC131048-(Q8xC13):1C4416,84
(Q8xC13):2C4 = D52:C4φ: C4/C1C4 ⊆ Out Q8xC131048+(Q8xC13):2C4416,85
(Q8xC13):3C4 = Q8xC13:C4φ: C4/C1C4 ⊆ Out Q8xC131048-(Q8xC13):3C4416,208
(Q8xC13):4C4 = Q8:Dic13φ: C4/C2C2 ⊆ Out Q8xC13416(Q8xC13):4C4416,42
(Q8xC13):5C4 = C52.56D4φ: C4/C2C2 ⊆ Out Q8xC131044(Q8xC13):5C4416,44
(Q8xC13):6C4 = Q8xDic13φ: C4/C2C2 ⊆ Out Q8xC13416(Q8xC13):6C4416,166
(Q8xC13):7C4 = C13xQ8:C4φ: C4/C2C2 ⊆ Out Q8xC13416(Q8xC13):7C4416,53
(Q8xC13):8C4 = C13xC4wrC2φ: C4/C2C2 ⊆ Out Q8xC131042(Q8xC13):8C4416,54

Non-split extensions G=N.Q with N=Q8xC13 and Q=C4
extensionφ:Q→Out NdρLabelID
(Q8xC13).C4 = D52.C4φ: C4/C1C4 ⊆ Out Q8xC132088+(Q8xC13).C4416,207
(Q8xC13).2C4 = D4.Dic13φ: C4/C2C2 ⊆ Out Q8xC132084(Q8xC13).2C4416,169
(Q8xC13).3C4 = C13xC8oD4φ: trivial image2082(Q8xC13).3C4416,192

׿
x
:
Z
F
o
wr
Q
<