# Extensions 1→N→G→Q→1 with N=Q8×C13 and Q=C4

Direct product G=N×Q with N=Q8×C13 and Q=C4
dρLabelID
Q8×C52416Q8xC52416,180

Semidirect products G=N:Q with N=Q8×C13 and Q=C4
extensionφ:Q→Out NdρLabelID
(Q8×C13)⋊1C4 = D13.Q16φ: C4/C1C4 ⊆ Out Q8×C131048-(Q8xC13):1C4416,84
(Q8×C13)⋊2C4 = D52⋊C4φ: C4/C1C4 ⊆ Out Q8×C131048+(Q8xC13):2C4416,85
(Q8×C13)⋊3C4 = Q8×C13⋊C4φ: C4/C1C4 ⊆ Out Q8×C131048-(Q8xC13):3C4416,208
(Q8×C13)⋊4C4 = Q8⋊Dic13φ: C4/C2C2 ⊆ Out Q8×C13416(Q8xC13):4C4416,42
(Q8×C13)⋊5C4 = C52.56D4φ: C4/C2C2 ⊆ Out Q8×C131044(Q8xC13):5C4416,44
(Q8×C13)⋊6C4 = Q8×Dic13φ: C4/C2C2 ⊆ Out Q8×C13416(Q8xC13):6C4416,166
(Q8×C13)⋊7C4 = C13×Q8⋊C4φ: C4/C2C2 ⊆ Out Q8×C13416(Q8xC13):7C4416,53
(Q8×C13)⋊8C4 = C13×C4≀C2φ: C4/C2C2 ⊆ Out Q8×C131042(Q8xC13):8C4416,54

Non-split extensions G=N.Q with N=Q8×C13 and Q=C4
extensionφ:Q→Out NdρLabelID
(Q8×C13).C4 = D52.C4φ: C4/C1C4 ⊆ Out Q8×C132088+(Q8xC13).C4416,207
(Q8×C13).2C4 = D4.Dic13φ: C4/C2C2 ⊆ Out Q8×C132084(Q8xC13).2C4416,169
(Q8×C13).3C4 = C13×C8○D4φ: trivial image2082(Q8xC13).3C4416,192

׿
×
𝔽