Extensions 1→N→G→Q→1 with N=C132C8 and Q=C4

Direct product G=N×Q with N=C132C8 and Q=C4
dρLabelID
C4×C132C8416C4xC13:2C8416,9

Semidirect products G=N:Q with N=C132C8 and Q=C4
extensionφ:Q→Out NdρLabelID
C132C81C4 = C26.D8φ: C4/C2C2 ⊆ Out C132C8416C13:2C8:1C4416,14
C132C82C4 = C52.Q8φ: C4/C2C2 ⊆ Out C132C8416C13:2C8:2C4416,15
C132C83C4 = C26.7C42φ: C4/C2C2 ⊆ Out C132C8416C13:2C8:3C4416,10
C132C84C4 = C1048C4φ: C4/C2C2 ⊆ Out C132C8416C13:2C8:4C4416,22
C132C85C4 = D26.8D4φ: C4/C2C2 ⊆ Out C132C81044C13:2C8:5C4416,68
C132C86C4 = D13.D8φ: C4/C2C2 ⊆ Out C132C81044C13:2C8:6C4416,69
C132C87C4 = C8×C13⋊C4φ: C4/C2C2 ⊆ Out C132C81044C13:2C8:7C4416,66
C132C88C4 = C104⋊C4φ: C4/C2C2 ⊆ Out C132C81044C13:2C8:8C4416,67
C132C89C4 = C8×Dic13φ: trivial image416C13:2C8:9C4416,20

Non-split extensions G=N.Q with N=C132C8 and Q=C4
extensionφ:Q→Out NdρLabelID
C132C8.1C4 = C52.53D4φ: C4/C2C2 ⊆ Out C132C82084C13:2C8.1C4416,29
C132C8.2C4 = C208⋊C2φ: C4/C2C2 ⊆ Out C132C82082C13:2C8.2C4416,5
C132C8.3C4 = C104.C4φ: C4/C2C2 ⊆ Out C132C82084C13:2C8.3C4416,70
C132C8.4C4 = C104.1C4φ: C4/C2C2 ⊆ Out C132C82084C13:2C8.4C4416,71
C132C8.5C4 = C2×C13⋊C16φ: C4/C2C2 ⊆ Out C132C8416C13:2C8.5C4416,72
C132C8.6C4 = C52.C8φ: C4/C2C2 ⊆ Out C132C82084C13:2C8.6C4416,73
C132C8.7C4 = C16×D13φ: trivial image2082C13:2C8.7C4416,4

׿
×
𝔽