metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C13⋊2C8, C26.2C4, C52.2C2, C4.2D13, C2.Dic13, SmallGroup(104,1)
Series: Derived ►Chief ►Lower central ►Upper central
C13 — C13⋊2C8 |
Generators and relations for C13⋊2C8
G = < a,b | a13=b8=1, bab-1=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65)(66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91)(92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 92 43 66 18 79 39 53)(2 104 44 78 19 91 27 65)(3 103 45 77 20 90 28 64)(4 102 46 76 21 89 29 63)(5 101 47 75 22 88 30 62)(6 100 48 74 23 87 31 61)(7 99 49 73 24 86 32 60)(8 98 50 72 25 85 33 59)(9 97 51 71 26 84 34 58)(10 96 52 70 14 83 35 57)(11 95 40 69 15 82 36 56)(12 94 41 68 16 81 37 55)(13 93 42 67 17 80 38 54)
G:=sub<Sym(104)| (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,92,43,66,18,79,39,53)(2,104,44,78,19,91,27,65)(3,103,45,77,20,90,28,64)(4,102,46,76,21,89,29,63)(5,101,47,75,22,88,30,62)(6,100,48,74,23,87,31,61)(7,99,49,73,24,86,32,60)(8,98,50,72,25,85,33,59)(9,97,51,71,26,84,34,58)(10,96,52,70,14,83,35,57)(11,95,40,69,15,82,36,56)(12,94,41,68,16,81,37,55)(13,93,42,67,17,80,38,54)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65)(66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91)(92,93,94,95,96,97,98,99,100,101,102,103,104), (1,92,43,66,18,79,39,53)(2,104,44,78,19,91,27,65)(3,103,45,77,20,90,28,64)(4,102,46,76,21,89,29,63)(5,101,47,75,22,88,30,62)(6,100,48,74,23,87,31,61)(7,99,49,73,24,86,32,60)(8,98,50,72,25,85,33,59)(9,97,51,71,26,84,34,58)(10,96,52,70,14,83,35,57)(11,95,40,69,15,82,36,56)(12,94,41,68,16,81,37,55)(13,93,42,67,17,80,38,54) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65),(66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91),(92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,92,43,66,18,79,39,53),(2,104,44,78,19,91,27,65),(3,103,45,77,20,90,28,64),(4,102,46,76,21,89,29,63),(5,101,47,75,22,88,30,62),(6,100,48,74,23,87,31,61),(7,99,49,73,24,86,32,60),(8,98,50,72,25,85,33,59),(9,97,51,71,26,84,34,58),(10,96,52,70,14,83,35,57),(11,95,40,69,15,82,36,56),(12,94,41,68,16,81,37,55),(13,93,42,67,17,80,38,54)]])
C13⋊2C8 is a maximal subgroup of
C13⋊C16 C8×D13 C8⋊D13 C52.4C4 D4⋊D13 D4.D13 Q8⋊D13 C13⋊Q16 C13⋊2C24 C39⋊3C8
C13⋊2C8 is a maximal quotient of
C13⋊2C16 C39⋊3C8
32 conjugacy classes
class | 1 | 2 | 4A | 4B | 8A | 8B | 8C | 8D | 13A | ··· | 13F | 26A | ··· | 26F | 52A | ··· | 52L |
order | 1 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 13 | ··· | 13 | 26 | ··· | 26 | 52 | ··· | 52 |
size | 1 | 1 | 1 | 1 | 13 | 13 | 13 | 13 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
type | + | + | + | - | |||
image | C1 | C2 | C4 | C8 | D13 | Dic13 | C13⋊2C8 |
kernel | C13⋊2C8 | C52 | C26 | C13 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 4 | 6 | 6 | 12 |
Matrix representation of C13⋊2C8 ►in GL3(𝔽313) generated by
1 | 0 | 0 |
0 | 312 | 1 |
0 | 234 | 78 |
188 | 0 | 0 |
0 | 303 | 264 |
0 | 34 | 10 |
G:=sub<GL(3,GF(313))| [1,0,0,0,312,234,0,1,78],[188,0,0,0,303,34,0,264,10] >;
C13⋊2C8 in GAP, Magma, Sage, TeX
C_{13}\rtimes_2C_8
% in TeX
G:=Group("C13:2C8");
// GroupNames label
G:=SmallGroup(104,1);
// by ID
G=gap.SmallGroup(104,1);
# by ID
G:=PCGroup([4,-2,-2,-2,-13,8,21,1539]);
// Polycyclic
G:=Group<a,b|a^13=b^8=1,b*a*b^-1=a^-1>;
// generators/relations
Export