Extensions 1→N→G→Q→1 with N=C4xC52 and Q=C2

Direct product G=NxQ with N=C4xC52 and Q=C2
dρLabelID
C2xC4xC52416C2xC4xC52416,175

Semidirect products G=N:Q with N=C4xC52 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C4xC52):1C2 = C42:2D13φ: C2/C1C2 ⊆ Aut C4xC52208(C4xC52):1C2416,97
(C4xC52):2C2 = C13xC42:C2φ: C2/C1C2 ⊆ Aut C4xC52208(C4xC52):2C2416,178
(C4xC52):3C2 = C13xC42:2C2φ: C2/C1C2 ⊆ Aut C4xC52208(C4xC52):3C2416,187
(C4xC52):4C2 = C4:D52φ: C2/C1C2 ⊆ Aut C4xC52208(C4xC52):4C2416,95
(C4xC52):5C2 = C4.D52φ: C2/C1C2 ⊆ Aut C4xC52208(C4xC52):5C2416,96
(C4xC52):6C2 = D52:4C4φ: C2/C1C2 ⊆ Aut C4xC521042(C4xC52):6C2416,12
(C4xC52):7C2 = C4xD52φ: C2/C1C2 ⊆ Aut C4xC52208(C4xC52):7C2416,94
(C4xC52):8C2 = C42xD13φ: C2/C1C2 ⊆ Aut C4xC52208(C4xC52):8C2416,92
(C4xC52):9C2 = C42:D13φ: C2/C1C2 ⊆ Aut C4xC52208(C4xC52):9C2416,93
(C4xC52):10C2 = C13xC4wrC2φ: C2/C1C2 ⊆ Aut C4xC521042(C4xC52):10C2416,54
(C4xC52):11C2 = D4xC52φ: C2/C1C2 ⊆ Aut C4xC52208(C4xC52):11C2416,179
(C4xC52):12C2 = C13xC4.4D4φ: C2/C1C2 ⊆ Aut C4xC52208(C4xC52):12C2416,185
(C4xC52):13C2 = C13xC4:1D4φ: C2/C1C2 ⊆ Aut C4xC52208(C4xC52):13C2416,188

Non-split extensions G=N.Q with N=C4xC52 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C4xC52).1C2 = C13xC8:C4φ: C2/C1C2 ⊆ Aut C4xC52416(C4xC52).1C2416,47
(C4xC52).2C2 = C52:2Q8φ: C2/C1C2 ⊆ Aut C4xC52416(C4xC52).2C2416,90
(C4xC52).3C2 = C52.6Q8φ: C2/C1C2 ⊆ Aut C4xC52416(C4xC52).3C2416,91
(C4xC52).4C2 = C52:3C8φ: C2/C1C2 ⊆ Aut C4xC52416(C4xC52).4C2416,11
(C4xC52).5C2 = C4xDic26φ: C2/C1C2 ⊆ Aut C4xC52416(C4xC52).5C2416,89
(C4xC52).6C2 = C4xC13:2C8φ: C2/C1C2 ⊆ Aut C4xC52416(C4xC52).6C2416,9
(C4xC52).7C2 = C26.7C42φ: C2/C1C2 ⊆ Aut C4xC52416(C4xC52).7C2416,10
(C4xC52).8C2 = C13xC4:C8φ: C2/C1C2 ⊆ Aut C4xC52416(C4xC52).8C2416,55
(C4xC52).9C2 = Q8xC52φ: C2/C1C2 ⊆ Aut C4xC52416(C4xC52).9C2416,180
(C4xC52).10C2 = C13xC42.C2φ: C2/C1C2 ⊆ Aut C4xC52416(C4xC52).10C2416,186
(C4xC52).11C2 = C13xC4:Q8φ: C2/C1C2 ⊆ Aut C4xC52416(C4xC52).11C2416,189

׿
x
:
Z
F
o
wr
Q
<