Extensions 1→N→G→Q→1 with N=C4×C52 and Q=C2

Direct product G=N×Q with N=C4×C52 and Q=C2
dρLabelID
C2×C4×C52416C2xC4xC52416,175

Semidirect products G=N:Q with N=C4×C52 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C4×C52)⋊1C2 = C422D13φ: C2/C1C2 ⊆ Aut C4×C52208(C4xC52):1C2416,97
(C4×C52)⋊2C2 = C13×C42⋊C2φ: C2/C1C2 ⊆ Aut C4×C52208(C4xC52):2C2416,178
(C4×C52)⋊3C2 = C13×C422C2φ: C2/C1C2 ⊆ Aut C4×C52208(C4xC52):3C2416,187
(C4×C52)⋊4C2 = C4⋊D52φ: C2/C1C2 ⊆ Aut C4×C52208(C4xC52):4C2416,95
(C4×C52)⋊5C2 = C4.D52φ: C2/C1C2 ⊆ Aut C4×C52208(C4xC52):5C2416,96
(C4×C52)⋊6C2 = D524C4φ: C2/C1C2 ⊆ Aut C4×C521042(C4xC52):6C2416,12
(C4×C52)⋊7C2 = C4×D52φ: C2/C1C2 ⊆ Aut C4×C52208(C4xC52):7C2416,94
(C4×C52)⋊8C2 = C42×D13φ: C2/C1C2 ⊆ Aut C4×C52208(C4xC52):8C2416,92
(C4×C52)⋊9C2 = C42⋊D13φ: C2/C1C2 ⊆ Aut C4×C52208(C4xC52):9C2416,93
(C4×C52)⋊10C2 = C13×C4≀C2φ: C2/C1C2 ⊆ Aut C4×C521042(C4xC52):10C2416,54
(C4×C52)⋊11C2 = D4×C52φ: C2/C1C2 ⊆ Aut C4×C52208(C4xC52):11C2416,179
(C4×C52)⋊12C2 = C13×C4.4D4φ: C2/C1C2 ⊆ Aut C4×C52208(C4xC52):12C2416,185
(C4×C52)⋊13C2 = C13×C41D4φ: C2/C1C2 ⊆ Aut C4×C52208(C4xC52):13C2416,188

Non-split extensions G=N.Q with N=C4×C52 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C4×C52).1C2 = C13×C8⋊C4φ: C2/C1C2 ⊆ Aut C4×C52416(C4xC52).1C2416,47
(C4×C52).2C2 = C522Q8φ: C2/C1C2 ⊆ Aut C4×C52416(C4xC52).2C2416,90
(C4×C52).3C2 = C52.6Q8φ: C2/C1C2 ⊆ Aut C4×C52416(C4xC52).3C2416,91
(C4×C52).4C2 = C523C8φ: C2/C1C2 ⊆ Aut C4×C52416(C4xC52).4C2416,11
(C4×C52).5C2 = C4×Dic26φ: C2/C1C2 ⊆ Aut C4×C52416(C4xC52).5C2416,89
(C4×C52).6C2 = C4×C132C8φ: C2/C1C2 ⊆ Aut C4×C52416(C4xC52).6C2416,9
(C4×C52).7C2 = C26.7C42φ: C2/C1C2 ⊆ Aut C4×C52416(C4xC52).7C2416,10
(C4×C52).8C2 = C13×C4⋊C8φ: C2/C1C2 ⊆ Aut C4×C52416(C4xC52).8C2416,55
(C4×C52).9C2 = Q8×C52φ: C2/C1C2 ⊆ Aut C4×C52416(C4xC52).9C2416,180
(C4×C52).10C2 = C13×C42.C2φ: C2/C1C2 ⊆ Aut C4×C52416(C4xC52).10C2416,186
(C4×C52).11C2 = C13×C4⋊Q8φ: C2/C1C2 ⊆ Aut C4×C52416(C4xC52).11C2416,189

׿
×
𝔽