metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D52⋊4C4, C52.33D4, C4.17D52, C42⋊3D13, Dic26⋊4C4, C13⋊3C4≀C2, (C4×C52)⋊6C2, C4.6(C4×D13), C52.37(C2×C4), (C2×C26).26D4, (C2×C4).66D26, C52.4C4⋊1C2, D52⋊5C2.1C2, (C2×C52).96C22, C2.3(D26⋊C4), C26.12(C22⋊C4), C22.7(C13⋊D4), SmallGroup(416,12)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D52⋊4C4
G = < a,b,c | a52=b2=c4=1, bab=a-1, ac=ca, cbc-1=a39b >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 100)(2 99)(3 98)(4 97)(5 96)(6 95)(7 94)(8 93)(9 92)(10 91)(11 90)(12 89)(13 88)(14 87)(15 86)(16 85)(17 84)(18 83)(19 82)(20 81)(21 80)(22 79)(23 78)(24 77)(25 76)(26 75)(27 74)(28 73)(29 72)(30 71)(31 70)(32 69)(33 68)(34 67)(35 66)(36 65)(37 64)(38 63)(39 62)(40 61)(41 60)(42 59)(43 58)(44 57)(45 56)(46 55)(47 54)(48 53)(49 104)(50 103)(51 102)(52 101)
(1 27)(2 28)(3 29)(4 30)(5 31)(6 32)(7 33)(8 34)(9 35)(10 36)(11 37)(12 38)(13 39)(14 40)(15 41)(16 42)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 49)(24 50)(25 51)(26 52)(53 66 79 92)(54 67 80 93)(55 68 81 94)(56 69 82 95)(57 70 83 96)(58 71 84 97)(59 72 85 98)(60 73 86 99)(61 74 87 100)(62 75 88 101)(63 76 89 102)(64 77 90 103)(65 78 91 104)
G:=sub<Sym(104)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,100)(2,99)(3,98)(4,97)(5,96)(6,95)(7,94)(8,93)(9,92)(10,91)(11,90)(12,89)(13,88)(14,87)(15,86)(16,85)(17,84)(18,83)(19,82)(20,81)(21,80)(22,79)(23,78)(24,77)(25,76)(26,75)(27,74)(28,73)(29,72)(30,71)(31,70)(32,69)(33,68)(34,67)(35,66)(36,65)(37,64)(38,63)(39,62)(40,61)(41,60)(42,59)(43,58)(44,57)(45,56)(46,55)(47,54)(48,53)(49,104)(50,103)(51,102)(52,101), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(53,66,79,92)(54,67,80,93)(55,68,81,94)(56,69,82,95)(57,70,83,96)(58,71,84,97)(59,72,85,98)(60,73,86,99)(61,74,87,100)(62,75,88,101)(63,76,89,102)(64,77,90,103)(65,78,91,104)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,100)(2,99)(3,98)(4,97)(5,96)(6,95)(7,94)(8,93)(9,92)(10,91)(11,90)(12,89)(13,88)(14,87)(15,86)(16,85)(17,84)(18,83)(19,82)(20,81)(21,80)(22,79)(23,78)(24,77)(25,76)(26,75)(27,74)(28,73)(29,72)(30,71)(31,70)(32,69)(33,68)(34,67)(35,66)(36,65)(37,64)(38,63)(39,62)(40,61)(41,60)(42,59)(43,58)(44,57)(45,56)(46,55)(47,54)(48,53)(49,104)(50,103)(51,102)(52,101), (1,27)(2,28)(3,29)(4,30)(5,31)(6,32)(7,33)(8,34)(9,35)(10,36)(11,37)(12,38)(13,39)(14,40)(15,41)(16,42)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(53,66,79,92)(54,67,80,93)(55,68,81,94)(56,69,82,95)(57,70,83,96)(58,71,84,97)(59,72,85,98)(60,73,86,99)(61,74,87,100)(62,75,88,101)(63,76,89,102)(64,77,90,103)(65,78,91,104) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,100),(2,99),(3,98),(4,97),(5,96),(6,95),(7,94),(8,93),(9,92),(10,91),(11,90),(12,89),(13,88),(14,87),(15,86),(16,85),(17,84),(18,83),(19,82),(20,81),(21,80),(22,79),(23,78),(24,77),(25,76),(26,75),(27,74),(28,73),(29,72),(30,71),(31,70),(32,69),(33,68),(34,67),(35,66),(36,65),(37,64),(38,63),(39,62),(40,61),(41,60),(42,59),(43,58),(44,57),(45,56),(46,55),(47,54),(48,53),(49,104),(50,103),(51,102),(52,101)], [(1,27),(2,28),(3,29),(4,30),(5,31),(6,32),(7,33),(8,34),(9,35),(10,36),(11,37),(12,38),(13,39),(14,40),(15,41),(16,42),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,49),(24,50),(25,51),(26,52),(53,66,79,92),(54,67,80,93),(55,68,81,94),(56,69,82,95),(57,70,83,96),(58,71,84,97),(59,72,85,98),(60,73,86,99),(61,74,87,100),(62,75,88,101),(63,76,89,102),(64,77,90,103),(65,78,91,104)]])
110 conjugacy classes
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | ··· | 4G | 4H | 8A | 8B | 13A | ··· | 13F | 26A | ··· | 26R | 52A | ··· | 52BT |
order | 1 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 4 | 8 | 8 | 13 | ··· | 13 | 26 | ··· | 26 | 52 | ··· | 52 |
size | 1 | 1 | 2 | 52 | 1 | 1 | 2 | ··· | 2 | 52 | 52 | 52 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
110 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | D4 | D13 | C4≀C2 | D26 | C4×D13 | D52 | C13⋊D4 | D52⋊4C4 |
kernel | D52⋊4C4 | C52.4C4 | C4×C52 | D52⋊5C2 | Dic26 | D52 | C52 | C2×C26 | C42 | C13 | C2×C4 | C4 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 6 | 4 | 6 | 12 | 12 | 12 | 48 |
Matrix representation of D52⋊4C4 ►in GL2(𝔽313) generated by
264 | 0 |
0 | 198 |
0 | 198 |
264 | 0 |
312 | 0 |
0 | 25 |
G:=sub<GL(2,GF(313))| [264,0,0,198],[0,264,198,0],[312,0,0,25] >;
D52⋊4C4 in GAP, Magma, Sage, TeX
D_{52}\rtimes_4C_4
% in TeX
G:=Group("D52:4C4");
// GroupNames label
G:=SmallGroup(416,12);
// by ID
G=gap.SmallGroup(416,12);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-13,121,31,362,579,69,13829]);
// Polycyclic
G:=Group<a,b,c|a^52=b^2=c^4=1,b*a*b=a^-1,a*c=c*a,c*b*c^-1=a^39*b>;
// generators/relations
Export