Extensions 1→N→G→Q→1 with N=C68 and Q=S3

Direct product G=N×Q with N=C68 and Q=S3
dρLabelID
S3×C682042S3xC68408,21

Semidirect products G=N:Q with N=C68 and Q=S3
extensionφ:Q→Aut NdρLabelID
C681S3 = D204φ: S3/C3C2 ⊆ Aut C682042+C68:1S3408,27
C682S3 = C4×D51φ: S3/C3C2 ⊆ Aut C682042C68:2S3408,26
C683S3 = C17×D12φ: S3/C3C2 ⊆ Aut C682042C68:3S3408,22

Non-split extensions G=N.Q with N=C68 and Q=S3
extensionφ:Q→Aut NdρLabelID
C68.1S3 = Dic102φ: S3/C3C2 ⊆ Aut C684082-C68.1S3408,25
C68.2S3 = C515C8φ: S3/C3C2 ⊆ Aut C684082C68.2S3408,3
C68.3S3 = C17×Dic6φ: S3/C3C2 ⊆ Aut C684082C68.3S3408,20
C68.4S3 = C17×C3⋊C8central extension (φ=1)4082C68.4S3408,1

׿
×
𝔽