d | ρ | Label | ID | ||
---|---|---|---|---|---|
S3×C68 | 204 | 2 | S3xC68 | 408,21 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C68⋊1S3 = D204 | φ: S3/C3 → C2 ⊆ Aut C68 | 204 | 2+ | C68:1S3 | 408,27 |
C68⋊2S3 = C4×D51 | φ: S3/C3 → C2 ⊆ Aut C68 | 204 | 2 | C68:2S3 | 408,26 |
C68⋊3S3 = C17×D12 | φ: S3/C3 → C2 ⊆ Aut C68 | 204 | 2 | C68:3S3 | 408,22 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C68.1S3 = Dic102 | φ: S3/C3 → C2 ⊆ Aut C68 | 408 | 2- | C68.1S3 | 408,25 |
C68.2S3 = C51⋊5C8 | φ: S3/C3 → C2 ⊆ Aut C68 | 408 | 2 | C68.2S3 | 408,3 |
C68.3S3 = C17×Dic6 | φ: S3/C3 → C2 ⊆ Aut C68 | 408 | 2 | C68.3S3 | 408,20 |
C68.4S3 = C17×C3⋊C8 | central extension (φ=1) | 408 | 2 | C68.4S3 | 408,1 |