Copied to
clipboard

G = D204order 408 = 23·3·17

Dihedral group

metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: D204, C4⋊D51, C514D4, C31D68, C681S3, C171D12, C2041C2, C121D17, D1021C2, C34.10D6, C6.10D34, C2.4D102, C102.10C22, sometimes denoted D408 or Dih204 or Dih408, SmallGroup(408,27)

Series: Derived Chief Lower central Upper central

C1C102 — D204
C1C17C51C102D102 — D204
C51C102 — D204
C1C2C4

Generators and relations for D204
 G = < a,b | a204=b2=1, bab=a-1 >

102C2
102C2
51C22
51C22
34S3
34S3
6D17
6D17
51D4
17D6
17D6
3D34
3D34
2D51
2D51
17D12
3D68

Smallest permutation representation of D204
On 204 points
Generators in S204
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204)
(1 51)(2 50)(3 49)(4 48)(5 47)(6 46)(7 45)(8 44)(9 43)(10 42)(11 41)(12 40)(13 39)(14 38)(15 37)(16 36)(17 35)(18 34)(19 33)(20 32)(21 31)(22 30)(23 29)(24 28)(25 27)(52 204)(53 203)(54 202)(55 201)(56 200)(57 199)(58 198)(59 197)(60 196)(61 195)(62 194)(63 193)(64 192)(65 191)(66 190)(67 189)(68 188)(69 187)(70 186)(71 185)(72 184)(73 183)(74 182)(75 181)(76 180)(77 179)(78 178)(79 177)(80 176)(81 175)(82 174)(83 173)(84 172)(85 171)(86 170)(87 169)(88 168)(89 167)(90 166)(91 165)(92 164)(93 163)(94 162)(95 161)(96 160)(97 159)(98 158)(99 157)(100 156)(101 155)(102 154)(103 153)(104 152)(105 151)(106 150)(107 149)(108 148)(109 147)(110 146)(111 145)(112 144)(113 143)(114 142)(115 141)(116 140)(117 139)(118 138)(119 137)(120 136)(121 135)(122 134)(123 133)(124 132)(125 131)(126 130)(127 129)

G:=sub<Sym(204)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204), (1,51)(2,50)(3,49)(4,48)(5,47)(6,46)(7,45)(8,44)(9,43)(10,42)(11,41)(12,40)(13,39)(14,38)(15,37)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28)(25,27)(52,204)(53,203)(54,202)(55,201)(56,200)(57,199)(58,198)(59,197)(60,196)(61,195)(62,194)(63,193)(64,192)(65,191)(66,190)(67,189)(68,188)(69,187)(70,186)(71,185)(72,184)(73,183)(74,182)(75,181)(76,180)(77,179)(78,178)(79,177)(80,176)(81,175)(82,174)(83,173)(84,172)(85,171)(86,170)(87,169)(88,168)(89,167)(90,166)(91,165)(92,164)(93,163)(94,162)(95,161)(96,160)(97,159)(98,158)(99,157)(100,156)(101,155)(102,154)(103,153)(104,152)(105,151)(106,150)(107,149)(108,148)(109,147)(110,146)(111,145)(112,144)(113,143)(114,142)(115,141)(116,140)(117,139)(118,138)(119,137)(120,136)(121,135)(122,134)(123,133)(124,132)(125,131)(126,130)(127,129)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204), (1,51)(2,50)(3,49)(4,48)(5,47)(6,46)(7,45)(8,44)(9,43)(10,42)(11,41)(12,40)(13,39)(14,38)(15,37)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,30)(23,29)(24,28)(25,27)(52,204)(53,203)(54,202)(55,201)(56,200)(57,199)(58,198)(59,197)(60,196)(61,195)(62,194)(63,193)(64,192)(65,191)(66,190)(67,189)(68,188)(69,187)(70,186)(71,185)(72,184)(73,183)(74,182)(75,181)(76,180)(77,179)(78,178)(79,177)(80,176)(81,175)(82,174)(83,173)(84,172)(85,171)(86,170)(87,169)(88,168)(89,167)(90,166)(91,165)(92,164)(93,163)(94,162)(95,161)(96,160)(97,159)(98,158)(99,157)(100,156)(101,155)(102,154)(103,153)(104,152)(105,151)(106,150)(107,149)(108,148)(109,147)(110,146)(111,145)(112,144)(113,143)(114,142)(115,141)(116,140)(117,139)(118,138)(119,137)(120,136)(121,135)(122,134)(123,133)(124,132)(125,131)(126,130)(127,129) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204)], [(1,51),(2,50),(3,49),(4,48),(5,47),(6,46),(7,45),(8,44),(9,43),(10,42),(11,41),(12,40),(13,39),(14,38),(15,37),(16,36),(17,35),(18,34),(19,33),(20,32),(21,31),(22,30),(23,29),(24,28),(25,27),(52,204),(53,203),(54,202),(55,201),(56,200),(57,199),(58,198),(59,197),(60,196),(61,195),(62,194),(63,193),(64,192),(65,191),(66,190),(67,189),(68,188),(69,187),(70,186),(71,185),(72,184),(73,183),(74,182),(75,181),(76,180),(77,179),(78,178),(79,177),(80,176),(81,175),(82,174),(83,173),(84,172),(85,171),(86,170),(87,169),(88,168),(89,167),(90,166),(91,165),(92,164),(93,163),(94,162),(95,161),(96,160),(97,159),(98,158),(99,157),(100,156),(101,155),(102,154),(103,153),(104,152),(105,151),(106,150),(107,149),(108,148),(109,147),(110,146),(111,145),(112,144),(113,143),(114,142),(115,141),(116,140),(117,139),(118,138),(119,137),(120,136),(121,135),(122,134),(123,133),(124,132),(125,131),(126,130),(127,129)])

105 conjugacy classes

class 1 2A2B2C 3  4  6 12A12B17A···17H34A···34H51A···51P68A···68P102A···102P204A···204AF
order1222346121217···1734···3451···5168···68102···102204···204
size11102102222222···22···22···22···22···22···2

105 irreducible representations

dim1112222222222
type+++++++++++++
imageC1C2C2S3D4D6D12D17D34D51D68D102D204
kernelD204C204D102C68C51C34C17C12C6C4C3C2C1
# reps11211128816161632

Matrix representation of D204 in GL2(𝔽409) generated by

104362
31498
,
195388
311214
G:=sub<GL(2,GF(409))| [104,314,362,98],[195,311,388,214] >;

D204 in GAP, Magma, Sage, TeX

D_{204}
% in TeX

G:=Group("D204");
// GroupNames label

G:=SmallGroup(408,27);
// by ID

G=gap.SmallGroup(408,27);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-17,61,26,323,9604]);
// Polycyclic

G:=Group<a,b|a^204=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D204 in TeX

׿
×
𝔽