Extensions 1→N→G→Q→1 with N=C22⋊C4 and Q=D13

Direct product G=N×Q with N=C22⋊C4 and Q=D13

Semidirect products G=N:Q with N=C22⋊C4 and Q=D13
extensionφ:Q→Out NdρLabelID
C22⋊C41D13 = C22.2D52φ: D13/C13C2 ⊆ Out C22⋊C41044C2^2:C4:1D13416,13
C22⋊C42D13 = C22⋊D52φ: D13/C13C2 ⊆ Out C22⋊C4104C2^2:C4:2D13416,103
C22⋊C43D13 = D26.12D4φ: D13/C13C2 ⊆ Out C22⋊C4208C2^2:C4:3D13416,104
C22⋊C44D13 = D26⋊D4φ: D13/C13C2 ⊆ Out C22⋊C4208C2^2:C4:4D13416,105
C22⋊C45D13 = C23.6D26φ: D13/C13C2 ⊆ Out C22⋊C4208C2^2:C4:5D13416,106
C22⋊C46D13 = C22.D52φ: D13/C13C2 ⊆ Out C22⋊C4208C2^2:C4:6D13416,107
C22⋊C47D13 = Dic134D4φ: trivial image208C2^2:C4:7D13416,102

Non-split extensions G=N.Q with N=C22⋊C4 and Q=D13
extensionφ:Q→Out NdρLabelID
C22⋊C4.1D13 = C22⋊Dic26φ: D13/C13C2 ⊆ Out C22⋊C4208C2^2:C4.1D13416,99
C22⋊C4.2D13 = C23.D26φ: D13/C13C2 ⊆ Out C22⋊C4208C2^2:C4.2D13416,100
C22⋊C4.3D13 = C23.11D26φ: trivial image208C2^2:C4.3D13416,98