Extensions 1→N→G→Q→1 with N=C2×C13⋊D4 and Q=C2

Direct product G=N×Q with N=C2×C13⋊D4 and Q=C2
dρLabelID
C22×C13⋊D4208C2^2xC13:D4416,226

Semidirect products G=N:Q with N=C2×C13⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C13⋊D4)⋊1C2 = C22⋊D52φ: C2/C1C2 ⊆ Out C2×C13⋊D4104(C2xC13:D4):1C2416,103
(C2×C13⋊D4)⋊2C2 = D26⋊D4φ: C2/C1C2 ⊆ Out C2×C13⋊D4208(C2xC13:D4):2C2416,105
(C2×C13⋊D4)⋊3C2 = C527D4φ: C2/C1C2 ⊆ Out C2×C13⋊D4208(C2xC13:D4):3C2416,151
(C2×C13⋊D4)⋊4C2 = C23⋊D26φ: C2/C1C2 ⊆ Out C2×C13⋊D4104(C2xC13:D4):4C2416,158
(C2×C13⋊D4)⋊5C2 = C522D4φ: C2/C1C2 ⊆ Out C2×C13⋊D4208(C2xC13:D4):5C2416,159
(C2×C13⋊D4)⋊6C2 = Dic13⋊D4φ: C2/C1C2 ⊆ Out C2×C13⋊D4208(C2xC13:D4):6C2416,160
(C2×C13⋊D4)⋊7C2 = C52⋊D4φ: C2/C1C2 ⊆ Out C2×C13⋊D4208(C2xC13:D4):7C2416,161
(C2×C13⋊D4)⋊8C2 = C24⋊D13φ: C2/C1C2 ⊆ Out C2×C13⋊D4104(C2xC13:D4):8C2416,174
(C2×C13⋊D4)⋊9C2 = C2×D4×D13φ: C2/C1C2 ⊆ Out C2×C13⋊D4104(C2xC13:D4):9C2416,216
(C2×C13⋊D4)⋊10C2 = C2×D42D13φ: C2/C1C2 ⊆ Out C2×C13⋊D4208(C2xC13:D4):10C2416,217
(C2×C13⋊D4)⋊11C2 = D46D26φ: C2/C1C2 ⊆ Out C2×C13⋊D41044(C2xC13:D4):11C2416,218
(C2×C13⋊D4)⋊12C2 = C2×D525C2φ: trivial image208(C2xC13:D4):12C2416,215

Non-split extensions G=N.Q with N=C2×C13⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C13⋊D4).1C2 = C22.2D52φ: C2/C1C2 ⊆ Out C2×C13⋊D41044(C2xC13:D4).1C2416,13
(C2×C13⋊D4).2C2 = Dic134D4φ: C2/C1C2 ⊆ Out C2×C13⋊D4208(C2xC13:D4).2C2416,102
(C2×C13⋊D4).3C2 = D26.12D4φ: C2/C1C2 ⊆ Out C2×C13⋊D4208(C2xC13:D4).3C2416,104
(C2×C13⋊D4).4C2 = C23.6D26φ: C2/C1C2 ⊆ Out C2×C13⋊D4208(C2xC13:D4).4C2416,106
(C2×C13⋊D4).5C2 = C22.D52φ: C2/C1C2 ⊆ Out C2×C13⋊D4208(C2xC13:D4).5C2416,107
(C2×C13⋊D4).6C2 = C23.23D26φ: C2/C1C2 ⊆ Out C2×C13⋊D4208(C2xC13:D4).6C2416,150
(C2×C13⋊D4).7C2 = D26.4D4φ: C2/C1C2 ⊆ Out C2×C13⋊D41044(C2xC13:D4).7C2416,86
(C2×C13⋊D4).8C2 = Dic13.4D4φ: C2/C1C2 ⊆ Out C2×C13⋊D41044(C2xC13:D4).8C2416,88
(C2×C13⋊D4).9C2 = C4×C13⋊D4φ: trivial image208(C2xC13:D4).9C2416,149

׿
×
𝔽