Extensions 1→N→G→Q→1 with N=C2xC13:D4 and Q=C2

Direct product G=NxQ with N=C2xC13:D4 and Q=C2
dρLabelID
C22xC13:D4208C2^2xC13:D4416,226

Semidirect products G=N:Q with N=C2xC13:D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC13:D4):1C2 = C22:D52φ: C2/C1C2 ⊆ Out C2xC13:D4104(C2xC13:D4):1C2416,103
(C2xC13:D4):2C2 = D26:D4φ: C2/C1C2 ⊆ Out C2xC13:D4208(C2xC13:D4):2C2416,105
(C2xC13:D4):3C2 = C52:7D4φ: C2/C1C2 ⊆ Out C2xC13:D4208(C2xC13:D4):3C2416,151
(C2xC13:D4):4C2 = C23:D26φ: C2/C1C2 ⊆ Out C2xC13:D4104(C2xC13:D4):4C2416,158
(C2xC13:D4):5C2 = C52:2D4φ: C2/C1C2 ⊆ Out C2xC13:D4208(C2xC13:D4):5C2416,159
(C2xC13:D4):6C2 = Dic13:D4φ: C2/C1C2 ⊆ Out C2xC13:D4208(C2xC13:D4):6C2416,160
(C2xC13:D4):7C2 = C52:D4φ: C2/C1C2 ⊆ Out C2xC13:D4208(C2xC13:D4):7C2416,161
(C2xC13:D4):8C2 = C24:D13φ: C2/C1C2 ⊆ Out C2xC13:D4104(C2xC13:D4):8C2416,174
(C2xC13:D4):9C2 = C2xD4xD13φ: C2/C1C2 ⊆ Out C2xC13:D4104(C2xC13:D4):9C2416,216
(C2xC13:D4):10C2 = C2xD4:2D13φ: C2/C1C2 ⊆ Out C2xC13:D4208(C2xC13:D4):10C2416,217
(C2xC13:D4):11C2 = D4:6D26φ: C2/C1C2 ⊆ Out C2xC13:D41044(C2xC13:D4):11C2416,218
(C2xC13:D4):12C2 = C2xD52:5C2φ: trivial image208(C2xC13:D4):12C2416,215

Non-split extensions G=N.Q with N=C2xC13:D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC13:D4).1C2 = C22.2D52φ: C2/C1C2 ⊆ Out C2xC13:D41044(C2xC13:D4).1C2416,13
(C2xC13:D4).2C2 = Dic13:4D4φ: C2/C1C2 ⊆ Out C2xC13:D4208(C2xC13:D4).2C2416,102
(C2xC13:D4).3C2 = D26.12D4φ: C2/C1C2 ⊆ Out C2xC13:D4208(C2xC13:D4).3C2416,104
(C2xC13:D4).4C2 = C23.6D26φ: C2/C1C2 ⊆ Out C2xC13:D4208(C2xC13:D4).4C2416,106
(C2xC13:D4).5C2 = C22.D52φ: C2/C1C2 ⊆ Out C2xC13:D4208(C2xC13:D4).5C2416,107
(C2xC13:D4).6C2 = C23.23D26φ: C2/C1C2 ⊆ Out C2xC13:D4208(C2xC13:D4).6C2416,150
(C2xC13:D4).7C2 = D26.4D4φ: C2/C1C2 ⊆ Out C2xC13:D41044(C2xC13:D4).7C2416,86
(C2xC13:D4).8C2 = Dic13.4D4φ: C2/C1C2 ⊆ Out C2xC13:D41044(C2xC13:D4).8C2416,88
(C2xC13:D4).9C2 = C4xC13:D4φ: trivial image208(C2xC13:D4).9C2416,149

׿
x
:
Z
F
o
wr
Q
<