Extensions 1→N→G→Q→1 with N=C13×C4○D4 and Q=C2

Direct product G=N×Q with N=C13×C4○D4 and Q=C2
dρLabelID
C4○D4×C26208C4oD4xC26416,230

Semidirect products G=N:Q with N=C13×C4○D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C13×C4○D4)⋊1C2 = D4⋊D26φ: C2/C1C2 ⊆ Out C13×C4○D41044+(C13xC4oD4):1C2416,170
(C13×C4○D4)⋊2C2 = C52.C23φ: C2/C1C2 ⊆ Out C13×C4○D42084(C13xC4oD4):2C2416,171
(C13×C4○D4)⋊3C2 = C4○D4×D13φ: C2/C1C2 ⊆ Out C13×C4○D41044(C13xC4oD4):3C2416,222
(C13×C4○D4)⋊4C2 = D48D26φ: C2/C1C2 ⊆ Out C13×C4○D41044+(C13xC4oD4):4C2416,223
(C13×C4○D4)⋊5C2 = D4.10D26φ: C2/C1C2 ⊆ Out C13×C4○D42084-(C13xC4oD4):5C2416,224
(C13×C4○D4)⋊6C2 = C13×C4○D8φ: C2/C1C2 ⊆ Out C13×C4○D42082(C13xC4oD4):6C2416,196
(C13×C4○D4)⋊7C2 = C13×C8⋊C22φ: C2/C1C2 ⊆ Out C13×C4○D41044(C13xC4oD4):7C2416,197
(C13×C4○D4)⋊8C2 = C13×2+ 1+4φ: C2/C1C2 ⊆ Out C13×C4○D41044(C13xC4oD4):8C2416,231
(C13×C4○D4)⋊9C2 = C13×2- 1+4φ: C2/C1C2 ⊆ Out C13×C4○D42084(C13xC4oD4):9C2416,232

Non-split extensions G=N.Q with N=C13×C4○D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C13×C4○D4).1C2 = C52.56D4φ: C2/C1C2 ⊆ Out C13×C4○D41044(C13xC4oD4).1C2416,44
(C13×C4○D4).2C2 = D4.Dic13φ: C2/C1C2 ⊆ Out C13×C4○D42084(C13xC4oD4).2C2416,169
(C13×C4○D4).3C2 = D4.9D26φ: C2/C1C2 ⊆ Out C13×C4○D42084-(C13xC4oD4).3C2416,172
(C13×C4○D4).4C2 = C13×C4≀C2φ: C2/C1C2 ⊆ Out C13×C4○D41042(C13xC4oD4).4C2416,54
(C13×C4○D4).5C2 = C13×C8.C22φ: C2/C1C2 ⊆ Out C13×C4○D42084(C13xC4oD4).5C2416,198
(C13×C4○D4).6C2 = C13×C8○D4φ: trivial image2082(C13xC4oD4).6C2416,192

׿
×
𝔽