Copied to
clipboard

G = D4⋊D26order 416 = 25·13

2nd semidirect product of D4 and D26 acting via D26/C26=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D44D26, Q84D26, C52.49D4, C52.17C23, D52.11C22, D4⋊D136C2, C4○D41D13, Q8⋊D136C2, (C2×C26).8D4, (C2×D52)⋊10C2, C135(C8⋊C22), (C2×C4).22D26, C26.59(C2×D4), C52.4C49C2, C132C84C22, (D4×C13)⋊4C22, (Q8×C13)⋊4C22, C4.24(C13⋊D4), (C2×C52).42C22, C4.17(C22×D13), C22.5(C13⋊D4), (C13×C4○D4)⋊1C2, C2.23(C2×C13⋊D4), SmallGroup(416,170)

Series: Derived Chief Lower central Upper central

C1C52 — D4⋊D26
C1C13C26C52D52C2×D52 — D4⋊D26
C13C26C52 — D4⋊D26
C1C2C2×C4C4○D4

Generators and relations for D4⋊D26
 G = < a,b,c,d | a4=b2=c26=d2=1, bab=dad=a-1, ac=ca, cbc-1=a2b, dbd=a-1b, dcd=c-1 >

Subgroups: 536 in 68 conjugacy classes, 29 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C13, M4(2), D8, SD16, C2×D4, C4○D4, D13, C26, C26, C8⋊C22, C52, C52, D26, C2×C26, C2×C26, C132C8, D52, D52, C2×C52, C2×C52, D4×C13, D4×C13, Q8×C13, C22×D13, C52.4C4, D4⋊D13, Q8⋊D13, C2×D52, C13×C4○D4, D4⋊D26
Quotients: C1, C2, C22, D4, C23, C2×D4, D13, C8⋊C22, D26, C13⋊D4, C22×D13, C2×C13⋊D4, D4⋊D26

Smallest permutation representation of D4⋊D26
On 104 points
Generators in S104
(1 41 17 32)(2 42 18 33)(3 43 19 34)(4 44 20 35)(5 45 21 36)(6 46 22 37)(7 47 23 38)(8 48 24 39)(9 49 25 27)(10 50 26 28)(11 51 14 29)(12 52 15 30)(13 40 16 31)(53 96 66 83)(54 97 67 84)(55 98 68 85)(56 99 69 86)(57 100 70 87)(58 101 71 88)(59 102 72 89)(60 103 73 90)(61 104 74 91)(62 79 75 92)(63 80 76 93)(64 81 77 94)(65 82 78 95)
(1 89)(2 103)(3 91)(4 79)(5 93)(6 81)(7 95)(8 83)(9 97)(10 85)(11 99)(12 87)(13 101)(14 86)(15 100)(16 88)(17 102)(18 90)(19 104)(20 92)(21 80)(22 94)(23 82)(24 96)(25 84)(26 98)(27 67)(28 55)(29 69)(30 57)(31 71)(32 59)(33 73)(34 61)(35 75)(36 63)(37 77)(38 65)(39 53)(40 58)(41 72)(42 60)(43 74)(44 62)(45 76)(46 64)(47 78)(48 66)(49 54)(50 68)(51 56)(52 70)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)(40 41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104)
(1 9)(2 8)(3 7)(4 6)(10 13)(11 12)(14 15)(16 26)(17 25)(18 24)(19 23)(20 22)(27 41)(28 40)(29 52)(30 51)(31 50)(32 49)(33 48)(34 47)(35 46)(36 45)(37 44)(38 43)(39 42)(53 103)(54 102)(55 101)(56 100)(57 99)(58 98)(59 97)(60 96)(61 95)(62 94)(63 93)(64 92)(65 91)(66 90)(67 89)(68 88)(69 87)(70 86)(71 85)(72 84)(73 83)(74 82)(75 81)(76 80)(77 79)(78 104)

G:=sub<Sym(104)| (1,41,17,32)(2,42,18,33)(3,43,19,34)(4,44,20,35)(5,45,21,36)(6,46,22,37)(7,47,23,38)(8,48,24,39)(9,49,25,27)(10,50,26,28)(11,51,14,29)(12,52,15,30)(13,40,16,31)(53,96,66,83)(54,97,67,84)(55,98,68,85)(56,99,69,86)(57,100,70,87)(58,101,71,88)(59,102,72,89)(60,103,73,90)(61,104,74,91)(62,79,75,92)(63,80,76,93)(64,81,77,94)(65,82,78,95), (1,89)(2,103)(3,91)(4,79)(5,93)(6,81)(7,95)(8,83)(9,97)(10,85)(11,99)(12,87)(13,101)(14,86)(15,100)(16,88)(17,102)(18,90)(19,104)(20,92)(21,80)(22,94)(23,82)(24,96)(25,84)(26,98)(27,67)(28,55)(29,69)(30,57)(31,71)(32,59)(33,73)(34,61)(35,75)(36,63)(37,77)(38,65)(39,53)(40,58)(41,72)(42,60)(43,74)(44,62)(45,76)(46,64)(47,78)(48,66)(49,54)(50,68)(51,56)(52,70), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,9)(2,8)(3,7)(4,6)(10,13)(11,12)(14,15)(16,26)(17,25)(18,24)(19,23)(20,22)(27,41)(28,40)(29,52)(30,51)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(53,103)(54,102)(55,101)(56,100)(57,99)(58,98)(59,97)(60,96)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81)(76,80)(77,79)(78,104)>;

G:=Group( (1,41,17,32)(2,42,18,33)(3,43,19,34)(4,44,20,35)(5,45,21,36)(6,46,22,37)(7,47,23,38)(8,48,24,39)(9,49,25,27)(10,50,26,28)(11,51,14,29)(12,52,15,30)(13,40,16,31)(53,96,66,83)(54,97,67,84)(55,98,68,85)(56,99,69,86)(57,100,70,87)(58,101,71,88)(59,102,72,89)(60,103,73,90)(61,104,74,91)(62,79,75,92)(63,80,76,93)(64,81,77,94)(65,82,78,95), (1,89)(2,103)(3,91)(4,79)(5,93)(6,81)(7,95)(8,83)(9,97)(10,85)(11,99)(12,87)(13,101)(14,86)(15,100)(16,88)(17,102)(18,90)(19,104)(20,92)(21,80)(22,94)(23,82)(24,96)(25,84)(26,98)(27,67)(28,55)(29,69)(30,57)(31,71)(32,59)(33,73)(34,61)(35,75)(36,63)(37,77)(38,65)(39,53)(40,58)(41,72)(42,60)(43,74)(44,62)(45,76)(46,64)(47,78)(48,66)(49,54)(50,68)(51,56)(52,70), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39)(40,41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104), (1,9)(2,8)(3,7)(4,6)(10,13)(11,12)(14,15)(16,26)(17,25)(18,24)(19,23)(20,22)(27,41)(28,40)(29,52)(30,51)(31,50)(32,49)(33,48)(34,47)(35,46)(36,45)(37,44)(38,43)(39,42)(53,103)(54,102)(55,101)(56,100)(57,99)(58,98)(59,97)(60,96)(61,95)(62,94)(63,93)(64,92)(65,91)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81)(76,80)(77,79)(78,104) );

G=PermutationGroup([[(1,41,17,32),(2,42,18,33),(3,43,19,34),(4,44,20,35),(5,45,21,36),(6,46,22,37),(7,47,23,38),(8,48,24,39),(9,49,25,27),(10,50,26,28),(11,51,14,29),(12,52,15,30),(13,40,16,31),(53,96,66,83),(54,97,67,84),(55,98,68,85),(56,99,69,86),(57,100,70,87),(58,101,71,88),(59,102,72,89),(60,103,73,90),(61,104,74,91),(62,79,75,92),(63,80,76,93),(64,81,77,94),(65,82,78,95)], [(1,89),(2,103),(3,91),(4,79),(5,93),(6,81),(7,95),(8,83),(9,97),(10,85),(11,99),(12,87),(13,101),(14,86),(15,100),(16,88),(17,102),(18,90),(19,104),(20,92),(21,80),(22,94),(23,82),(24,96),(25,84),(26,98),(27,67),(28,55),(29,69),(30,57),(31,71),(32,59),(33,73),(34,61),(35,75),(36,63),(37,77),(38,65),(39,53),(40,58),(41,72),(42,60),(43,74),(44,62),(45,76),(46,64),(47,78),(48,66),(49,54),(50,68),(51,56),(52,70)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39),(40,41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104)], [(1,9),(2,8),(3,7),(4,6),(10,13),(11,12),(14,15),(16,26),(17,25),(18,24),(19,23),(20,22),(27,41),(28,40),(29,52),(30,51),(31,50),(32,49),(33,48),(34,47),(35,46),(36,45),(37,44),(38,43),(39,42),(53,103),(54,102),(55,101),(56,100),(57,99),(58,98),(59,97),(60,96),(61,95),(62,94),(63,93),(64,92),(65,91),(66,90),(67,89),(68,88),(69,87),(70,86),(71,85),(72,84),(73,83),(74,82),(75,81),(76,80),(77,79),(78,104)]])

71 conjugacy classes

class 1 2A2B2C2D2E4A4B4C8A8B13A···13F26A···26F26G···26X52A···52L52M···52AD
order1222224448813···1326···2626···2652···5252···52
size1124525222452522···22···24···42···24···4

71 irreducible representations

dim1111112222222244
type++++++++++++++
imageC1C2C2C2C2C2D4D4D13D26D26D26C13⋊D4C13⋊D4C8⋊C22D4⋊D26
kernelD4⋊D26C52.4C4D4⋊D13Q8⋊D13C2×D52C13×C4○D4C52C2×C26C4○D4C2×C4D4Q8C4C22C13C1
# reps1122111166661212112

Matrix representation of D4⋊D26 in GL6(𝔽313)

100000
010000
002124100
006729200
00312222176
0028914211391
,
100000
010000
00100171182274
00261202227106
002653924480
0031020620980
,
81810000
2321470000
001000
000100
0021023120
0062990312
,
2322320000
166810000
001000
0013131200
0018670222176
00112508191

G:=sub<GL(6,GF(313))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,21,67,31,289,0,0,241,292,2,142,0,0,0,0,222,113,0,0,0,0,176,91],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,100,261,265,310,0,0,171,202,39,206,0,0,182,227,244,209,0,0,274,106,80,80],[81,232,0,0,0,0,81,147,0,0,0,0,0,0,1,0,210,6,0,0,0,1,2,299,0,0,0,0,312,0,0,0,0,0,0,312],[232,166,0,0,0,0,232,81,0,0,0,0,0,0,1,131,186,11,0,0,0,312,70,250,0,0,0,0,222,81,0,0,0,0,176,91] >;

D4⋊D26 in GAP, Magma, Sage, TeX

D_4\rtimes D_{26}
% in TeX

G:=Group("D4:D26");
// GroupNames label

G:=SmallGroup(416,170);
// by ID

G=gap.SmallGroup(416,170);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-13,218,188,579,159,69,13829]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^26=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^2*b,d*b*d=a^-1*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽