Copied to
clipboard

G = D211order 422 = 2·211

Dihedral group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D211, C211⋊C2, sometimes denoted D422 or Dih211 or Dih422, SmallGroup(422,1)

Series: Derived Chief Lower central Upper central

C1C211 — D211
C1C211 — D211
C211 — D211
C1

Generators and relations for D211
 G = < a,b | a211=b2=1, bab=a-1 >

211C2

Smallest permutation representation of D211
On 211 points: primitive
Generators in S211
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211)
(1 211)(2 210)(3 209)(4 208)(5 207)(6 206)(7 205)(8 204)(9 203)(10 202)(11 201)(12 200)(13 199)(14 198)(15 197)(16 196)(17 195)(18 194)(19 193)(20 192)(21 191)(22 190)(23 189)(24 188)(25 187)(26 186)(27 185)(28 184)(29 183)(30 182)(31 181)(32 180)(33 179)(34 178)(35 177)(36 176)(37 175)(38 174)(39 173)(40 172)(41 171)(42 170)(43 169)(44 168)(45 167)(46 166)(47 165)(48 164)(49 163)(50 162)(51 161)(52 160)(53 159)(54 158)(55 157)(56 156)(57 155)(58 154)(59 153)(60 152)(61 151)(62 150)(63 149)(64 148)(65 147)(66 146)(67 145)(68 144)(69 143)(70 142)(71 141)(72 140)(73 139)(74 138)(75 137)(76 136)(77 135)(78 134)(79 133)(80 132)(81 131)(82 130)(83 129)(84 128)(85 127)(86 126)(87 125)(88 124)(89 123)(90 122)(91 121)(92 120)(93 119)(94 118)(95 117)(96 116)(97 115)(98 114)(99 113)(100 112)(101 111)(102 110)(103 109)(104 108)(105 107)

G:=sub<Sym(211)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211), (1,211)(2,210)(3,209)(4,208)(5,207)(6,206)(7,205)(8,204)(9,203)(10,202)(11,201)(12,200)(13,199)(14,198)(15,197)(16,196)(17,195)(18,194)(19,193)(20,192)(21,191)(22,190)(23,189)(24,188)(25,187)(26,186)(27,185)(28,184)(29,183)(30,182)(31,181)(32,180)(33,179)(34,178)(35,177)(36,176)(37,175)(38,174)(39,173)(40,172)(41,171)(42,170)(43,169)(44,168)(45,167)(46,166)(47,165)(48,164)(49,163)(50,162)(51,161)(52,160)(53,159)(54,158)(55,157)(56,156)(57,155)(58,154)(59,153)(60,152)(61,151)(62,150)(63,149)(64,148)(65,147)(66,146)(67,145)(68,144)(69,143)(70,142)(71,141)(72,140)(73,139)(74,138)(75,137)(76,136)(77,135)(78,134)(79,133)(80,132)(81,131)(82,130)(83,129)(84,128)(85,127)(86,126)(87,125)(88,124)(89,123)(90,122)(91,121)(92,120)(93,119)(94,118)(95,117)(96,116)(97,115)(98,114)(99,113)(100,112)(101,111)(102,110)(103,109)(104,108)(105,107)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211), (1,211)(2,210)(3,209)(4,208)(5,207)(6,206)(7,205)(8,204)(9,203)(10,202)(11,201)(12,200)(13,199)(14,198)(15,197)(16,196)(17,195)(18,194)(19,193)(20,192)(21,191)(22,190)(23,189)(24,188)(25,187)(26,186)(27,185)(28,184)(29,183)(30,182)(31,181)(32,180)(33,179)(34,178)(35,177)(36,176)(37,175)(38,174)(39,173)(40,172)(41,171)(42,170)(43,169)(44,168)(45,167)(46,166)(47,165)(48,164)(49,163)(50,162)(51,161)(52,160)(53,159)(54,158)(55,157)(56,156)(57,155)(58,154)(59,153)(60,152)(61,151)(62,150)(63,149)(64,148)(65,147)(66,146)(67,145)(68,144)(69,143)(70,142)(71,141)(72,140)(73,139)(74,138)(75,137)(76,136)(77,135)(78,134)(79,133)(80,132)(81,131)(82,130)(83,129)(84,128)(85,127)(86,126)(87,125)(88,124)(89,123)(90,122)(91,121)(92,120)(93,119)(94,118)(95,117)(96,116)(97,115)(98,114)(99,113)(100,112)(101,111)(102,110)(103,109)(104,108)(105,107) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211)], [(1,211),(2,210),(3,209),(4,208),(5,207),(6,206),(7,205),(8,204),(9,203),(10,202),(11,201),(12,200),(13,199),(14,198),(15,197),(16,196),(17,195),(18,194),(19,193),(20,192),(21,191),(22,190),(23,189),(24,188),(25,187),(26,186),(27,185),(28,184),(29,183),(30,182),(31,181),(32,180),(33,179),(34,178),(35,177),(36,176),(37,175),(38,174),(39,173),(40,172),(41,171),(42,170),(43,169),(44,168),(45,167),(46,166),(47,165),(48,164),(49,163),(50,162),(51,161),(52,160),(53,159),(54,158),(55,157),(56,156),(57,155),(58,154),(59,153),(60,152),(61,151),(62,150),(63,149),(64,148),(65,147),(66,146),(67,145),(68,144),(69,143),(70,142),(71,141),(72,140),(73,139),(74,138),(75,137),(76,136),(77,135),(78,134),(79,133),(80,132),(81,131),(82,130),(83,129),(84,128),(85,127),(86,126),(87,125),(88,124),(89,123),(90,122),(91,121),(92,120),(93,119),(94,118),(95,117),(96,116),(97,115),(98,114),(99,113),(100,112),(101,111),(102,110),(103,109),(104,108),(105,107)])

107 conjugacy classes

class 1  2 211A···211DA
order12211···211
size12112···2

107 irreducible representations

dim112
type+++
imageC1C2D211
kernelD211C211C1
# reps11105

Matrix representation of D211 in GL2(𝔽2111) generated by

342110
10
,
342110
11552077
G:=sub<GL(2,GF(2111))| [34,1,2110,0],[34,1155,2110,2077] >;

D211 in GAP, Magma, Sage, TeX

D_{211}
% in TeX

G:=Group("D211");
// GroupNames label

G:=SmallGroup(422,1);
// by ID

G=gap.SmallGroup(422,1);
# by ID

G:=PCGroup([2,-2,-211,1681]);
// Polycyclic

G:=Group<a,b|a^211=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D211 in TeX

׿
×
𝔽