Extensions 1→N→G→Q→1 with N=D4×C27 and Q=C2

Direct product G=N×Q with N=D4×C27 and Q=C2
dρLabelID
D4×C54216D4xC54432,54

Semidirect products G=N:Q with N=D4×C27 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C27)⋊1C2 = D4⋊D27φ: C2/C1C2 ⊆ Out D4×C272164+(D4xC27):1C2432,16
(D4×C27)⋊2C2 = D4×D27φ: C2/C1C2 ⊆ Out D4×C271084+(D4xC27):2C2432,47
(D4×C27)⋊3C2 = D42D27φ: C2/C1C2 ⊆ Out D4×C272164-(D4xC27):3C2432,48
(D4×C27)⋊4C2 = D8×C27φ: C2/C1C2 ⊆ Out D4×C272162(D4xC27):4C2432,25
(D4×C27)⋊5C2 = C4○D4×C27φ: trivial image2162(D4xC27):5C2432,56

Non-split extensions G=N.Q with N=D4×C27 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C27).1C2 = D4.D27φ: C2/C1C2 ⊆ Out D4×C272164-(D4xC27).1C2432,15
(D4×C27).2C2 = SD16×C27φ: C2/C1C2 ⊆ Out D4×C272162(D4xC27).2C2432,26

׿
×
𝔽