Copied to
clipboard

G = D4×D27order 432 = 24·33

Direct product of D4 and D27

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4×D27, C41D54, C108⋊C22, C36.5D6, D1083C2, C12.5D18, C222D54, D542C22, C54.5C23, Dic271C22, C3.(D4×D9), C9.(S3×D4), C272(C2×D4), (C2×C54)⋊C22, (D4×C27)⋊2C2, (C4×D27)⋊1C2, C27⋊D41C2, (D4×C9).3S3, (C3×D4).3D9, (C2×C18).2D6, (C2×C6).2D18, (C22×D27)⋊2C2, C6.32(C22×D9), C2.6(C22×D27), C18.32(C22×S3), SmallGroup(432,47)

Series: Derived Chief Lower central Upper central

C1C54 — D4×D27
C1C3C9C27C54D54C22×D27 — D4×D27
C27C54 — D4×D27
C1C2D4

Generators and relations for D4×D27
 G = < a,b,c,d | a4=b2=c27=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 1040 in 108 conjugacy classes, 37 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, D4, D4, C23, C9, Dic3, C12, D6, C2×C6, C2×D4, D9, C18, C18, C4×S3, D12, C3⋊D4, C3×D4, C22×S3, C27, Dic9, C36, D18, C2×C18, S3×D4, D27, D27, C54, C54, C4×D9, D36, C9⋊D4, D4×C9, C22×D9, Dic27, C108, D54, D54, D54, C2×C54, D4×D9, C4×D27, D108, C27⋊D4, D4×C27, C22×D27, D4×D27
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D9, C22×S3, D18, S3×D4, D27, C22×D9, D54, D4×D9, C22×D27, D4×D27

Smallest permutation representation of D4×D27
On 108 points
Generators in S108
(1 94 29 65)(2 95 30 66)(3 96 31 67)(4 97 32 68)(5 98 33 69)(6 99 34 70)(7 100 35 71)(8 101 36 72)(9 102 37 73)(10 103 38 74)(11 104 39 75)(12 105 40 76)(13 106 41 77)(14 107 42 78)(15 108 43 79)(16 82 44 80)(17 83 45 81)(18 84 46 55)(19 85 47 56)(20 86 48 57)(21 87 49 58)(22 88 50 59)(23 89 51 60)(24 90 52 61)(25 91 53 62)(26 92 54 63)(27 93 28 64)
(1 65)(2 66)(3 67)(4 68)(5 69)(6 70)(7 71)(8 72)(9 73)(10 74)(11 75)(12 76)(13 77)(14 78)(15 79)(16 80)(17 81)(18 55)(19 56)(20 57)(21 58)(22 59)(23 60)(24 61)(25 62)(26 63)(27 64)(28 93)(29 94)(30 95)(31 96)(32 97)(33 98)(34 99)(35 100)(36 101)(37 102)(38 103)(39 104)(40 105)(41 106)(42 107)(43 108)(44 82)(45 83)(46 84)(47 85)(48 86)(49 87)(50 88)(51 89)(52 90)(53 91)(54 92)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)
(1 29)(2 28)(3 54)(4 53)(5 52)(6 51)(7 50)(8 49)(9 48)(10 47)(11 46)(12 45)(13 44)(14 43)(15 42)(16 41)(17 40)(18 39)(19 38)(20 37)(21 36)(22 35)(23 34)(24 33)(25 32)(26 31)(27 30)(55 104)(56 103)(57 102)(58 101)(59 100)(60 99)(61 98)(62 97)(63 96)(64 95)(65 94)(66 93)(67 92)(68 91)(69 90)(70 89)(71 88)(72 87)(73 86)(74 85)(75 84)(76 83)(77 82)(78 108)(79 107)(80 106)(81 105)

G:=sub<Sym(108)| (1,94,29,65)(2,95,30,66)(3,96,31,67)(4,97,32,68)(5,98,33,69)(6,99,34,70)(7,100,35,71)(8,101,36,72)(9,102,37,73)(10,103,38,74)(11,104,39,75)(12,105,40,76)(13,106,41,77)(14,107,42,78)(15,108,43,79)(16,82,44,80)(17,83,45,81)(18,84,46,55)(19,85,47,56)(20,86,48,57)(21,87,49,58)(22,88,50,59)(23,89,51,60)(24,90,52,61)(25,91,53,62)(26,92,54,63)(27,93,28,64), (1,65)(2,66)(3,67)(4,68)(5,69)(6,70)(7,71)(8,72)(9,73)(10,74)(11,75)(12,76)(13,77)(14,78)(15,79)(16,80)(17,81)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,93)(29,94)(30,95)(31,96)(32,97)(33,98)(34,99)(35,100)(36,101)(37,102)(38,103)(39,104)(40,105)(41,106)(42,107)(43,108)(44,82)(45,83)(46,84)(47,85)(48,86)(49,87)(50,88)(51,89)(52,90)(53,91)(54,92), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,29)(2,28)(3,54)(4,53)(5,52)(6,51)(7,50)(8,49)(9,48)(10,47)(11,46)(12,45)(13,44)(14,43)(15,42)(16,41)(17,40)(18,39)(19,38)(20,37)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(55,104)(56,103)(57,102)(58,101)(59,100)(60,99)(61,98)(62,97)(63,96)(64,95)(65,94)(66,93)(67,92)(68,91)(69,90)(70,89)(71,88)(72,87)(73,86)(74,85)(75,84)(76,83)(77,82)(78,108)(79,107)(80,106)(81,105)>;

G:=Group( (1,94,29,65)(2,95,30,66)(3,96,31,67)(4,97,32,68)(5,98,33,69)(6,99,34,70)(7,100,35,71)(8,101,36,72)(9,102,37,73)(10,103,38,74)(11,104,39,75)(12,105,40,76)(13,106,41,77)(14,107,42,78)(15,108,43,79)(16,82,44,80)(17,83,45,81)(18,84,46,55)(19,85,47,56)(20,86,48,57)(21,87,49,58)(22,88,50,59)(23,89,51,60)(24,90,52,61)(25,91,53,62)(26,92,54,63)(27,93,28,64), (1,65)(2,66)(3,67)(4,68)(5,69)(6,70)(7,71)(8,72)(9,73)(10,74)(11,75)(12,76)(13,77)(14,78)(15,79)(16,80)(17,81)(18,55)(19,56)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,93)(29,94)(30,95)(31,96)(32,97)(33,98)(34,99)(35,100)(36,101)(37,102)(38,103)(39,104)(40,105)(41,106)(42,107)(43,108)(44,82)(45,83)(46,84)(47,85)(48,86)(49,87)(50,88)(51,89)(52,90)(53,91)(54,92), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108), (1,29)(2,28)(3,54)(4,53)(5,52)(6,51)(7,50)(8,49)(9,48)(10,47)(11,46)(12,45)(13,44)(14,43)(15,42)(16,41)(17,40)(18,39)(19,38)(20,37)(21,36)(22,35)(23,34)(24,33)(25,32)(26,31)(27,30)(55,104)(56,103)(57,102)(58,101)(59,100)(60,99)(61,98)(62,97)(63,96)(64,95)(65,94)(66,93)(67,92)(68,91)(69,90)(70,89)(71,88)(72,87)(73,86)(74,85)(75,84)(76,83)(77,82)(78,108)(79,107)(80,106)(81,105) );

G=PermutationGroup([[(1,94,29,65),(2,95,30,66),(3,96,31,67),(4,97,32,68),(5,98,33,69),(6,99,34,70),(7,100,35,71),(8,101,36,72),(9,102,37,73),(10,103,38,74),(11,104,39,75),(12,105,40,76),(13,106,41,77),(14,107,42,78),(15,108,43,79),(16,82,44,80),(17,83,45,81),(18,84,46,55),(19,85,47,56),(20,86,48,57),(21,87,49,58),(22,88,50,59),(23,89,51,60),(24,90,52,61),(25,91,53,62),(26,92,54,63),(27,93,28,64)], [(1,65),(2,66),(3,67),(4,68),(5,69),(6,70),(7,71),(8,72),(9,73),(10,74),(11,75),(12,76),(13,77),(14,78),(15,79),(16,80),(17,81),(18,55),(19,56),(20,57),(21,58),(22,59),(23,60),(24,61),(25,62),(26,63),(27,64),(28,93),(29,94),(30,95),(31,96),(32,97),(33,98),(34,99),(35,100),(36,101),(37,102),(38,103),(39,104),(40,105),(41,106),(42,107),(43,108),(44,82),(45,83),(46,84),(47,85),(48,86),(49,87),(50,88),(51,89),(52,90),(53,91),(54,92)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)], [(1,29),(2,28),(3,54),(4,53),(5,52),(6,51),(7,50),(8,49),(9,48),(10,47),(11,46),(12,45),(13,44),(14,43),(15,42),(16,41),(17,40),(18,39),(19,38),(20,37),(21,36),(22,35),(23,34),(24,33),(25,32),(26,31),(27,30),(55,104),(56,103),(57,102),(58,101),(59,100),(60,99),(61,98),(62,97),(63,96),(64,95),(65,94),(66,93),(67,92),(68,91),(69,90),(70,89),(71,88),(72,87),(73,86),(74,85),(75,84),(76,83),(77,82),(78,108),(79,107),(80,106),(81,105)]])

75 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B6A6B6C9A9B9C 12 18A18B18C18D···18I27A···27I36A36B36C54A···54I54J···54AA108A···108I
order122222223446669991218181818···1827···2736363654···5454···54108···108
size112227275454225424422242224···42···24442···24···44···4

75 irreducible representations

dim1111112222222222444
type+++++++++++++++++++
imageC1C2C2C2C2C2S3D4D6D6D9D18D18D27D54D54S3×D4D4×D9D4×D27
kernelD4×D27C4×D27D108C27⋊D4D4×C27C22×D27D4×C9D27C36C2×C18C3×D4C12C2×C6D4C4C22C9C3C1
# reps11121212123369918139

Matrix representation of D4×D27 in GL4(𝔽109) generated by

1000
0100
001083
00721
,
1000
0100
001083
0001
,
875100
582900
0010
0001
,
825900
322700
001080
000108
G:=sub<GL(4,GF(109))| [1,0,0,0,0,1,0,0,0,0,108,72,0,0,3,1],[1,0,0,0,0,1,0,0,0,0,108,0,0,0,3,1],[87,58,0,0,51,29,0,0,0,0,1,0,0,0,0,1],[82,32,0,0,59,27,0,0,0,0,108,0,0,0,0,108] >;

D4×D27 in GAP, Magma, Sage, TeX

D_4\times D_{27}
% in TeX

G:=Group("D4xD27");
// GroupNames label

G:=SmallGroup(432,47);
// by ID

G=gap.SmallGroup(432,47);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,135,2804,557,10085,292,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^27=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽