Extensions 1→N→G→Q→1 with N=C3:S3 and Q=C2xDic3

Direct product G=NxQ with N=C3:S3 and Q=C2xDic3
dρLabelID
C2xDic3xC3:S3144C2xDic3xC3:S3432,677

Semidirect products G=N:Q with N=C3:S3 and Q=C2xDic3
extensionφ:Q→Out NdρLabelID
C3:S3:(C2xDic3) = C2xC6.S32φ: C2xDic3/C22S3 ⊆ Out C3:S372C3:S3:(C2xDic3)432,317
C3:S3:2(C2xDic3) = S32xDic3φ: C2xDic3/Dic3C2 ⊆ Out C3:S3488-C3:S3:2(C2xDic3)432,594
C3:S3:3(C2xDic3) = C2xC33:9(C2xC4)φ: C2xDic3/C2xC6C2 ⊆ Out C3:S348C3:S3:3(C2xDic3)432,692
C3:S3:4(C2xDic3) = C22xC33:C4φ: C2xDic3/C2xC6C2 ⊆ Out C3:S348C3:S3:4(C2xDic3)432,766

Non-split extensions G=N.Q with N=C3:S3 and Q=C2xDic3
extensionφ:Q→Out NdρLabelID
C3:S3.1(C2xDic3) = C2xC3:F9φ: C2xDic3/C6C4 ⊆ Out C3:S3488C3:S3.1(C2xDic3)432,752
C3:S3.2(C2xDic3) = S32:Dic3φ: C2xDic3/C6C22 ⊆ Out C3:S3244C3:S3.2(C2xDic3)432,580
C3:S3.3(C2xDic3) = (C3xC6).9D12φ: C2xDic3/C6C22 ⊆ Out C3:S3488-C3:S3.3(C2xDic3)432,587
C3:S3.4(C2xDic3) = C6.2PSU3(F2)φ: C2xDic3/C6C22 ⊆ Out C3:S3488C3:S3.4(C2xDic3)432,593
C3:S3.5(C2xDic3) = Dic3xC32:C4φ: C2xDic3/Dic3C2 ⊆ Out C3:S3488-C3:S3.5(C2xDic3)432,567

׿
x
:
Z
F
o
wr
Q
<