extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1(C2×3- 1+2) = C4⋊C4×3- 1+2 | φ: C2×3- 1+2/3- 1+2 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).1(C2xES-(3,1)) | 432,208 |
(C2×C4).2(C2×3- 1+2) = M4(2)×3- 1+2 | φ: C2×3- 1+2/3- 1+2 → C2 ⊆ Aut C2×C4 | 72 | 6 | (C2xC4).2(C2xES-(3,1)) | 432,214 |
(C2×C4).3(C2×3- 1+2) = C2×Q8×3- 1+2 | φ: C2×3- 1+2/3- 1+2 → C2 ⊆ Aut C2×C4 | 144 | | (C2xC4).3(C2xES-(3,1)) | 432,408 |
(C2×C4).4(C2×3- 1+2) = C42×3- 1+2 | central extension (φ=1) | 144 | | (C2xC4).4(C2xES-(3,1)) | 432,202 |
(C2×C4).5(C2×3- 1+2) = C2×C8×3- 1+2 | central extension (φ=1) | 144 | | (C2xC4).5(C2xES-(3,1)) | 432,211 |