Copied to
clipboard

G = 3- 1+2order 27 = 33

Extraspecial group

p-group, metacyclic, nilpotent (class 2), monomial

Aliases: 3- 1+2, C9⋊C3, C32.C3, C3.2C32, 3-Sylow(AGammaL(1,64)), SmallGroup(27,4)

Series: Derived Chief Lower central Upper central Jennings

C1C3 — 3- 1+2
C1C3C32 — 3- 1+2
C1C3 — 3- 1+2
C1C3 — 3- 1+2
C1C3C3 — 3- 1+2

Generators and relations for 3- 1+2
 G = < a,b | a9=b3=1, bab-1=a4 >

3C3

Character table of 3- 1+2

 class 13A3B3C3D9A9B9C9D9E9F
 size 11133333333
ρ111111111111    trivial
ρ2111ζ3ζ32ζ3ζ32ζ311ζ32    linear of order 3
ρ3111ζ32ζ3ζ311ζ32ζ3ζ32    linear of order 3
ρ411111ζ3ζ3ζ32ζ3ζ32ζ32    linear of order 3
ρ511111ζ32ζ32ζ3ζ32ζ3ζ3    linear of order 3
ρ6111ζ3ζ32ζ3211ζ3ζ32ζ3    linear of order 3
ρ7111ζ32ζ3ζ32ζ3ζ3211ζ3    linear of order 3
ρ8111ζ32ζ31ζ32ζ3ζ3ζ321    linear of order 3
ρ9111ζ3ζ321ζ3ζ32ζ32ζ31    linear of order 3
ρ103-3+3-3/2-3-3-3/200000000    complex faithful
ρ113-3-3-3/2-3+3-3/200000000    complex faithful

Permutation representations of 3- 1+2
On 9 points - transitive group 9T6
Generators in S9
(1 2 3 4 5 6 7 8 9)
(2 8 5)(3 6 9)

G:=sub<Sym(9)| (1,2,3,4,5,6,7,8,9), (2,8,5)(3,6,9)>;

G:=Group( (1,2,3,4,5,6,7,8,9), (2,8,5)(3,6,9) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9)], [(2,8,5),(3,6,9)]])

G:=TransitiveGroup(9,6);

Regular action on 27 points - transitive group 27T5
Generators in S27
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(1 21 13)(2 19 17)(3 26 12)(4 24 16)(5 22 11)(6 20 15)(7 27 10)(8 25 14)(9 23 18)

G:=sub<Sym(27)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,21,13)(2,19,17)(3,26,12)(4,24,16)(5,22,11)(6,20,15)(7,27,10)(8,25,14)(9,23,18)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,21,13)(2,19,17)(3,26,12)(4,24,16)(5,22,11)(6,20,15)(7,27,10)(8,25,14)(9,23,18) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(1,21,13),(2,19,17),(3,26,12),(4,24,16),(5,22,11),(6,20,15),(7,27,10),(8,25,14),(9,23,18)]])

G:=TransitiveGroup(27,5);

3- 1+2 is a maximal subgroup of
C9⋊C6  C3≀C3  He3.C3  C3.He3  C9○He3  C9⋊A4  C32.A4  C63⋊C3  C633C3  C21.C32  C117⋊C3  C1173C3  C39.C32
3- 1+2 is a maximal quotient of
C32⋊C9  C9⋊C9  C9⋊A4  C32.A4  C63⋊C3  C633C3  C21.C32  C117⋊C3  C1173C3  C39.C32

Polynomial with Galois group 3- 1+2 over ℚ
actionf(x)Disc(f)
9T6x9-21x7-7x6+126x5+42x4-273x3-63x2+189x+7312·78·2151532

Matrix representation of 3- 1+2 in GL3(𝔽7) generated by

001
400
040
,
100
040
002
G:=sub<GL(3,GF(7))| [0,4,0,0,0,4,1,0,0],[1,0,0,0,4,0,0,0,2] >;

3- 1+2 in GAP, Magma, Sage, TeX

3_-^{1+2}
% in TeX

G:=Group("ES-(3,1)");
// GroupNames label

G:=SmallGroup(27,4);
// by ID

G=gap.SmallGroup(27,4);
# by ID

G:=PCGroup([3,-3,3,-3,27,73]);
// Polycyclic

G:=Group<a,b|a^9=b^3=1,b*a*b^-1=a^4>;
// generators/relations

Export

Subgroup lattice of 3- 1+2 in TeX
Character table of 3- 1+2 in TeX

׿
×
𝔽