Copied to
clipboard

G = C4⋊C4×3- 1+2order 432 = 24·33

Direct product of C4⋊C4 and 3- 1+2

direct product, metacyclic, nilpotent (class 2), monomial

Aliases: C4⋊C4×3- 1+2, C363C12, (C2×C36).9C6, (C6×C12).4C6, C18.3(C3×Q8), C6.25(C6×C12), C12.6(C3×C12), (C3×C12).4C12, C18.13(C3×D4), C18.12(C2×C12), C4⋊(C4×3- 1+2), C6.5(Q8×C32), C62.36(C2×C6), (C2×C6).31C62, C6.17(D4×C32), C2.(Q8×3- 1+2), (C4×3- 1+2)⋊3C4, C2.2(D4×3- 1+2), (C2×3- 1+2).3Q8, (C2×3- 1+2).13D4, C22.4(C22×3- 1+2), (C22×3- 1+2).15C22, (C9×C4⋊C4)⋊C3, C93(C3×C4⋊C4), C32.(C3×C4⋊C4), (C32×C4⋊C4).C3, (C3×C6).7(C3×Q8), (C2×C12).6(C3×C6), (C3×C6).31(C3×D4), C3.3(C32×C4⋊C4), (C2×C18).17(C2×C6), (C3×C6).31(C2×C12), (C3×C4⋊C4).3C32, C2.4(C2×C4×3- 1+2), (C2×C4×3- 1+2).9C2, (C2×C4).1(C2×3- 1+2), (C2×3- 1+2).12(C2×C4), SmallGroup(432,208)

Series: Derived Chief Lower central Upper central

C1C6 — C4⋊C4×3- 1+2
C1C3C6C2×C6C62C22×3- 1+2C2×C4×3- 1+2 — C4⋊C4×3- 1+2
C1C6 — C4⋊C4×3- 1+2
C1C2×C6 — C4⋊C4×3- 1+2

Generators and relations for C4⋊C4×3- 1+2
 G = < a,b,c,d | a4=b4=c9=d3=1, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >

Subgroups: 150 in 104 conjugacy classes, 77 normal (28 characteristic)
C1, C2, C3, C3, C4, C4, C22, C6, C6, C2×C4, C2×C4, C9, C32, C12, C12, C2×C6, C2×C6, C4⋊C4, C18, C3×C6, C2×C12, C2×C12, C2×C12, 3- 1+2, C36, C36, C2×C18, C3×C12, C3×C12, C62, C3×C4⋊C4, C3×C4⋊C4, C2×3- 1+2, C2×C36, C6×C12, C6×C12, C4×3- 1+2, C4×3- 1+2, C22×3- 1+2, C9×C4⋊C4, C32×C4⋊C4, C2×C4×3- 1+2, C2×C4×3- 1+2, C4⋊C4×3- 1+2
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, Q8, C32, C12, C2×C6, C4⋊C4, C3×C6, C2×C12, C3×D4, C3×Q8, 3- 1+2, C3×C12, C62, C3×C4⋊C4, C2×3- 1+2, C6×C12, D4×C32, Q8×C32, C4×3- 1+2, C22×3- 1+2, C32×C4⋊C4, C2×C4×3- 1+2, D4×3- 1+2, Q8×3- 1+2, C4⋊C4×3- 1+2

Smallest permutation representation of C4⋊C4×3- 1+2
On 144 points
Generators in S144
(1 88 40 70)(2 89 41 71)(3 90 42 72)(4 82 43 64)(5 83 44 65)(6 84 45 66)(7 85 37 67)(8 86 38 68)(9 87 39 69)(10 123 127 105)(11 124 128 106)(12 125 129 107)(13 126 130 108)(14 118 131 100)(15 119 132 101)(16 120 133 102)(17 121 134 103)(18 122 135 104)(19 113 140 99)(20 114 141 91)(21 115 142 92)(22 116 143 93)(23 117 144 94)(24 109 136 95)(25 110 137 96)(26 111 138 97)(27 112 139 98)(28 59 46 73)(29 60 47 74)(30 61 48 75)(31 62 49 76)(32 63 50 77)(33 55 51 78)(34 56 52 79)(35 57 53 80)(36 58 54 81)
(1 106 34 115)(2 107 35 116)(3 108 36 117)(4 100 28 109)(5 101 29 110)(6 102 30 111)(7 103 31 112)(8 104 32 113)(9 105 33 114)(10 78 141 69)(11 79 142 70)(12 80 143 71)(13 81 144 72)(14 73 136 64)(15 74 137 65)(16 75 138 66)(17 76 139 67)(18 77 140 68)(19 86 135 63)(20 87 127 55)(21 88 128 56)(22 89 129 57)(23 90 130 58)(24 82 131 59)(25 83 132 60)(26 84 133 61)(27 85 134 62)(37 121 49 98)(38 122 50 99)(39 123 51 91)(40 124 52 92)(41 125 53 93)(42 126 54 94)(43 118 46 95)(44 119 47 96)(45 120 48 97)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(2 8 5)(3 6 9)(10 13 16)(12 18 15)(19 25 22)(20 23 26)(29 35 32)(30 33 36)(38 44 41)(39 42 45)(47 53 50)(48 51 54)(55 58 61)(57 63 60)(65 71 68)(66 69 72)(74 80 77)(75 78 81)(83 89 86)(84 87 90)(91 94 97)(93 99 96)(101 107 104)(102 105 108)(110 116 113)(111 114 117)(119 125 122)(120 123 126)(127 130 133)(129 135 132)(137 143 140)(138 141 144)

G:=sub<Sym(144)| (1,88,40,70)(2,89,41,71)(3,90,42,72)(4,82,43,64)(5,83,44,65)(6,84,45,66)(7,85,37,67)(8,86,38,68)(9,87,39,69)(10,123,127,105)(11,124,128,106)(12,125,129,107)(13,126,130,108)(14,118,131,100)(15,119,132,101)(16,120,133,102)(17,121,134,103)(18,122,135,104)(19,113,140,99)(20,114,141,91)(21,115,142,92)(22,116,143,93)(23,117,144,94)(24,109,136,95)(25,110,137,96)(26,111,138,97)(27,112,139,98)(28,59,46,73)(29,60,47,74)(30,61,48,75)(31,62,49,76)(32,63,50,77)(33,55,51,78)(34,56,52,79)(35,57,53,80)(36,58,54,81), (1,106,34,115)(2,107,35,116)(3,108,36,117)(4,100,28,109)(5,101,29,110)(6,102,30,111)(7,103,31,112)(8,104,32,113)(9,105,33,114)(10,78,141,69)(11,79,142,70)(12,80,143,71)(13,81,144,72)(14,73,136,64)(15,74,137,65)(16,75,138,66)(17,76,139,67)(18,77,140,68)(19,86,135,63)(20,87,127,55)(21,88,128,56)(22,89,129,57)(23,90,130,58)(24,82,131,59)(25,83,132,60)(26,84,133,61)(27,85,134,62)(37,121,49,98)(38,122,50,99)(39,123,51,91)(40,124,52,92)(41,125,53,93)(42,126,54,94)(43,118,46,95)(44,119,47,96)(45,120,48,97), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,25,22)(20,23,26)(29,35,32)(30,33,36)(38,44,41)(39,42,45)(47,53,50)(48,51,54)(55,58,61)(57,63,60)(65,71,68)(66,69,72)(74,80,77)(75,78,81)(83,89,86)(84,87,90)(91,94,97)(93,99,96)(101,107,104)(102,105,108)(110,116,113)(111,114,117)(119,125,122)(120,123,126)(127,130,133)(129,135,132)(137,143,140)(138,141,144)>;

G:=Group( (1,88,40,70)(2,89,41,71)(3,90,42,72)(4,82,43,64)(5,83,44,65)(6,84,45,66)(7,85,37,67)(8,86,38,68)(9,87,39,69)(10,123,127,105)(11,124,128,106)(12,125,129,107)(13,126,130,108)(14,118,131,100)(15,119,132,101)(16,120,133,102)(17,121,134,103)(18,122,135,104)(19,113,140,99)(20,114,141,91)(21,115,142,92)(22,116,143,93)(23,117,144,94)(24,109,136,95)(25,110,137,96)(26,111,138,97)(27,112,139,98)(28,59,46,73)(29,60,47,74)(30,61,48,75)(31,62,49,76)(32,63,50,77)(33,55,51,78)(34,56,52,79)(35,57,53,80)(36,58,54,81), (1,106,34,115)(2,107,35,116)(3,108,36,117)(4,100,28,109)(5,101,29,110)(6,102,30,111)(7,103,31,112)(8,104,32,113)(9,105,33,114)(10,78,141,69)(11,79,142,70)(12,80,143,71)(13,81,144,72)(14,73,136,64)(15,74,137,65)(16,75,138,66)(17,76,139,67)(18,77,140,68)(19,86,135,63)(20,87,127,55)(21,88,128,56)(22,89,129,57)(23,90,130,58)(24,82,131,59)(25,83,132,60)(26,84,133,61)(27,85,134,62)(37,121,49,98)(38,122,50,99)(39,123,51,91)(40,124,52,92)(41,125,53,93)(42,126,54,94)(43,118,46,95)(44,119,47,96)(45,120,48,97), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (2,8,5)(3,6,9)(10,13,16)(12,18,15)(19,25,22)(20,23,26)(29,35,32)(30,33,36)(38,44,41)(39,42,45)(47,53,50)(48,51,54)(55,58,61)(57,63,60)(65,71,68)(66,69,72)(74,80,77)(75,78,81)(83,89,86)(84,87,90)(91,94,97)(93,99,96)(101,107,104)(102,105,108)(110,116,113)(111,114,117)(119,125,122)(120,123,126)(127,130,133)(129,135,132)(137,143,140)(138,141,144) );

G=PermutationGroup([[(1,88,40,70),(2,89,41,71),(3,90,42,72),(4,82,43,64),(5,83,44,65),(6,84,45,66),(7,85,37,67),(8,86,38,68),(9,87,39,69),(10,123,127,105),(11,124,128,106),(12,125,129,107),(13,126,130,108),(14,118,131,100),(15,119,132,101),(16,120,133,102),(17,121,134,103),(18,122,135,104),(19,113,140,99),(20,114,141,91),(21,115,142,92),(22,116,143,93),(23,117,144,94),(24,109,136,95),(25,110,137,96),(26,111,138,97),(27,112,139,98),(28,59,46,73),(29,60,47,74),(30,61,48,75),(31,62,49,76),(32,63,50,77),(33,55,51,78),(34,56,52,79),(35,57,53,80),(36,58,54,81)], [(1,106,34,115),(2,107,35,116),(3,108,36,117),(4,100,28,109),(5,101,29,110),(6,102,30,111),(7,103,31,112),(8,104,32,113),(9,105,33,114),(10,78,141,69),(11,79,142,70),(12,80,143,71),(13,81,144,72),(14,73,136,64),(15,74,137,65),(16,75,138,66),(17,76,139,67),(18,77,140,68),(19,86,135,63),(20,87,127,55),(21,88,128,56),(22,89,129,57),(23,90,130,58),(24,82,131,59),(25,83,132,60),(26,84,133,61),(27,85,134,62),(37,121,49,98),(38,122,50,99),(39,123,51,91),(40,124,52,92),(41,125,53,93),(42,126,54,94),(43,118,46,95),(44,119,47,96),(45,120,48,97)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(2,8,5),(3,6,9),(10,13,16),(12,18,15),(19,25,22),(20,23,26),(29,35,32),(30,33,36),(38,44,41),(39,42,45),(47,53,50),(48,51,54),(55,58,61),(57,63,60),(65,71,68),(66,69,72),(74,80,77),(75,78,81),(83,89,86),(84,87,90),(91,94,97),(93,99,96),(101,107,104),(102,105,108),(110,116,113),(111,114,117),(119,125,122),(120,123,126),(127,130,133),(129,135,132),(137,143,140),(138,141,144)]])

110 conjugacy classes

class 1 2A2B2C3A3B3C3D4A···4F6A···6F6G···6L9A···9F12A···12L12M···12X18A···18R36A···36AJ
order122233334···46···66···69···912···1212···1218···1836···36
size111111332···21···13···33···32···26···63···36···6

110 irreducible representations

dim11111111122222233366
type+++-
imageC1C2C3C3C4C6C6C12C12D4Q8C3×D4C3×Q8C3×D4C3×Q83- 1+2C2×3- 1+2C4×3- 1+2D4×3- 1+2Q8×3- 1+2
kernelC4⋊C4×3- 1+2C2×C4×3- 1+2C9×C4⋊C4C32×C4⋊C4C4×3- 1+2C2×C36C6×C12C36C3×C12C2×3- 1+2C2×3- 1+2C18C18C3×C6C3×C6C4⋊C4C2×C4C4C2C2
# reps1362418624811662226822

Matrix representation of C4⋊C4×3- 1+2 in GL5(𝔽37)

19000
836000
00100
00010
00001
,
10000
836000
003100
000310
000031
,
100000
010000
00190
00103610
002520
,
260000
026000
00100
001100
0015026

G:=sub<GL(5,GF(37))| [1,8,0,0,0,9,36,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,8,0,0,0,0,36,0,0,0,0,0,31,0,0,0,0,0,31,0,0,0,0,0,31],[10,0,0,0,0,0,10,0,0,0,0,0,1,10,25,0,0,9,36,2,0,0,0,10,0],[26,0,0,0,0,0,26,0,0,0,0,0,1,1,15,0,0,0,10,0,0,0,0,0,26] >;

C4⋊C4×3- 1+2 in GAP, Magma, Sage, TeX

C_4\rtimes C_4\times 3_-^{1+2}
% in TeX

G:=Group("C4:C4xES-(3,1)");
// GroupNames label

G:=SmallGroup(432,208);
// by ID

G=gap.SmallGroup(432,208);
# by ID

G:=PCGroup([7,-2,-2,-3,-3,-2,-2,-3,504,533,260,772,1109]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^9=d^3=1,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations

׿
×
𝔽