Extensions 1→N→G→Q→1 with N=C2×He3 and Q=Q8

Direct product G=N×Q with N=C2×He3 and Q=Q8
dρLabelID
C2×Q8×He3144C2xQ8xHe3432,407

Semidirect products G=N:Q with N=C2×He3 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C2×He3)⋊Q8 = C2×SU3(𝔽2)φ: Q8/C1Q8 ⊆ Out C2×He3543(C2xHe3):Q8432,531
(C2×He3)⋊2Q8 = C2×He32Q8φ: Q8/C2C22 ⊆ Out C2×He3144(C2xHe3):2Q8432,316
(C2×He3)⋊3Q8 = C2×He33Q8φ: Q8/C4C2 ⊆ Out C2×He3144(C2xHe3):3Q8432,348
(C2×He3)⋊4Q8 = C2×He34Q8φ: Q8/C4C2 ⊆ Out C2×He3144(C2xHe3):4Q8432,384

Non-split extensions G=N.Q with N=C2×He3 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C2×He3).Q8 = C2.SU3(𝔽2)φ: Q8/C1Q8 ⊆ Out C2×He3723(C2xHe3).Q8432,239
(C2×He3).2Q8 = C62.D6φ: Q8/C2C22 ⊆ Out C2×He3144(C2xHe3).2Q8432,95
(C2×He3).3Q8 = C62.3D6φ: Q8/C2C22 ⊆ Out C2×He3144(C2xHe3).3Q8432,96
(C2×He3).4Q8 = C62.19D6φ: Q8/C4C2 ⊆ Out C2×He3144(C2xHe3).4Q8432,139
(C2×He3).5Q8 = C62.20D6φ: Q8/C4C2 ⊆ Out C2×He3144(C2xHe3).5Q8432,140
(C2×He3).6Q8 = C62.29D6φ: Q8/C4C2 ⊆ Out C2×He3144(C2xHe3).6Q8432,187
(C2×He3).7Q8 = C62.30D6φ: Q8/C4C2 ⊆ Out C2×He3144(C2xHe3).7Q8432,188
(C2×He3).8Q8 = C4⋊C4×He3φ: trivial image144(C2xHe3).8Q8432,207

׿
×
𝔽