Copied to
clipboard

G = C2×He32Q8order 432 = 24·33

Direct product of C2 and He32Q8

direct product, non-abelian, supersoluble, monomial

Aliases: C2×He32Q8, C62.6D6, (C3×C6)⋊Dic6, He34(C2×Q8), (C2×He3)⋊2Q8, C3⋊Dic3.8D6, C322(C2×Dic6), C6.10(C322Q8), C32⋊C12.7C22, (C2×He3).10C23, C22.8(C32⋊D6), He33C4.13C22, (C22×He3).6C22, C6.84(C2×S32), (C2×C6).52S32, (C2×C3⋊Dic3).4S3, C2.12(C2×C32⋊D6), C3.2(C2×C322Q8), (C2×C32⋊C12).4C2, (C3×C6).10(C22×S3), (C2×He33C4).5C2, SmallGroup(432,316)

Series: Derived Chief Lower central Upper central

C1C3C2×He3 — C2×He32Q8
C1C3C32He3C2×He3C32⋊C12He32Q8 — C2×He32Q8
He3C2×He3 — C2×He32Q8
C1C22

Generators and relations for C2×He32Q8
 G = < a,b,c,d,e,f | a2=b3=c3=d3=e4=1, f2=e2, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, dbd-1=bc-1, be=eb, fbf-1=b-1, cd=dc, ece-1=fcf-1=c-1, ede-1=d-1, df=fd, fef-1=e-1 >

Subgroups: 739 in 149 conjugacy classes, 45 normal (11 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C6, C2×C4, Q8, C32, C32, Dic3, C12, C2×C6, C2×C6, C2×Q8, C3×C6, C3×C6, Dic6, C2×Dic3, C2×C12, He3, C3×Dic3, C3⋊Dic3, C62, C62, C2×Dic6, C2×He3, C2×He3, C322Q8, C6×Dic3, C2×C3⋊Dic3, C32⋊C12, He33C4, C22×He3, C2×C322Q8, He32Q8, C2×C32⋊C12, C2×He33C4, C2×He32Q8
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, Dic6, C22×S3, S32, C2×Dic6, C322Q8, C2×S32, C32⋊D6, C2×C322Q8, He32Q8, C2×C32⋊D6, C2×He32Q8

Smallest permutation representation of C2×He32Q8
On 144 points
Generators in S144
(1 27)(2 28)(3 25)(4 26)(5 38)(6 39)(7 40)(8 37)(9 73)(10 74)(11 75)(12 76)(13 69)(14 70)(15 71)(16 72)(17 46)(18 47)(19 48)(20 45)(21 58)(22 59)(23 60)(24 57)(29 68)(30 65)(31 66)(32 67)(33 102)(34 103)(35 104)(36 101)(41 112)(42 109)(43 110)(44 111)(49 95)(50 96)(51 93)(52 94)(53 130)(54 131)(55 132)(56 129)(61 88)(62 85)(63 86)(64 87)(77 117)(78 118)(79 119)(80 120)(81 121)(82 122)(83 123)(84 124)(89 97)(90 98)(91 99)(92 100)(105 133)(106 134)(107 135)(108 136)(113 137)(114 138)(115 139)(116 140)(125 141)(126 142)(127 143)(128 144)
(5 49 66)(6 50 67)(7 51 68)(8 52 65)(21 112 103)(22 109 104)(23 110 101)(24 111 102)(29 40 93)(30 37 94)(31 38 95)(32 39 96)(33 57 44)(34 58 41)(35 59 42)(36 60 43)(53 144 117)(54 141 118)(55 142 119)(56 143 120)(61 115 99)(62 116 100)(63 113 97)(64 114 98)(77 130 128)(78 131 125)(79 132 126)(80 129 127)(85 140 92)(86 137 89)(87 138 90)(88 139 91)
(1 69 19)(2 20 70)(3 71 17)(4 18 72)(5 49 66)(6 67 50)(7 51 68)(8 65 52)(9 82 106)(10 107 83)(11 84 108)(12 105 81)(13 48 27)(14 28 45)(15 46 25)(16 26 47)(21 112 103)(22 104 109)(23 110 101)(24 102 111)(29 40 93)(30 94 37)(31 38 95)(32 96 39)(33 44 57)(34 58 41)(35 42 59)(36 60 43)(53 117 144)(54 141 118)(55 119 142)(56 143 120)(61 99 115)(62 116 100)(63 97 113)(64 114 98)(73 122 134)(74 135 123)(75 124 136)(76 133 121)(77 128 130)(78 131 125)(79 126 132)(80 129 127)(85 140 92)(86 89 137)(87 138 90)(88 91 139)
(1 32 23)(2 24 29)(3 30 21)(4 22 31)(5 47 35)(6 36 48)(7 45 33)(8 34 46)(9 97 118)(10 119 98)(11 99 120)(12 117 100)(13 50 43)(14 44 51)(15 52 41)(16 42 49)(17 37 103)(18 104 38)(19 39 101)(20 102 40)(25 65 58)(26 59 66)(27 67 60)(28 57 68)(53 116 81)(54 82 113)(55 114 83)(56 84 115)(61 143 108)(62 105 144)(63 141 106)(64 107 142)(69 96 110)(70 111 93)(71 94 112)(72 109 95)(73 89 78)(74 79 90)(75 91 80)(76 77 92)(85 133 128)(86 125 134)(87 135 126)(88 127 136)(121 130 140)(122 137 131)(123 132 138)(124 139 129)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)
(1 9 3 11)(2 12 4 10)(5 138 7 140)(6 137 8 139)(13 134 15 136)(14 133 16 135)(17 84 19 82)(18 83 20 81)(21 120 23 118)(22 119 24 117)(25 75 27 73)(26 74 28 76)(29 100 31 98)(30 99 32 97)(33 130 35 132)(34 129 36 131)(37 115 39 113)(38 114 40 116)(41 127 43 125)(42 126 44 128)(45 121 47 123)(46 124 48 122)(49 87 51 85)(50 86 52 88)(53 104 55 102)(54 103 56 101)(57 77 59 79)(58 80 60 78)(61 96 63 94)(62 95 64 93)(65 91 67 89)(66 90 68 92)(69 106 71 108)(70 105 72 107)(109 142 111 144)(110 141 112 143)

G:=sub<Sym(144)| (1,27)(2,28)(3,25)(4,26)(5,38)(6,39)(7,40)(8,37)(9,73)(10,74)(11,75)(12,76)(13,69)(14,70)(15,71)(16,72)(17,46)(18,47)(19,48)(20,45)(21,58)(22,59)(23,60)(24,57)(29,68)(30,65)(31,66)(32,67)(33,102)(34,103)(35,104)(36,101)(41,112)(42,109)(43,110)(44,111)(49,95)(50,96)(51,93)(52,94)(53,130)(54,131)(55,132)(56,129)(61,88)(62,85)(63,86)(64,87)(77,117)(78,118)(79,119)(80,120)(81,121)(82,122)(83,123)(84,124)(89,97)(90,98)(91,99)(92,100)(105,133)(106,134)(107,135)(108,136)(113,137)(114,138)(115,139)(116,140)(125,141)(126,142)(127,143)(128,144), (5,49,66)(6,50,67)(7,51,68)(8,52,65)(21,112,103)(22,109,104)(23,110,101)(24,111,102)(29,40,93)(30,37,94)(31,38,95)(32,39,96)(33,57,44)(34,58,41)(35,59,42)(36,60,43)(53,144,117)(54,141,118)(55,142,119)(56,143,120)(61,115,99)(62,116,100)(63,113,97)(64,114,98)(77,130,128)(78,131,125)(79,132,126)(80,129,127)(85,140,92)(86,137,89)(87,138,90)(88,139,91), (1,69,19)(2,20,70)(3,71,17)(4,18,72)(5,49,66)(6,67,50)(7,51,68)(8,65,52)(9,82,106)(10,107,83)(11,84,108)(12,105,81)(13,48,27)(14,28,45)(15,46,25)(16,26,47)(21,112,103)(22,104,109)(23,110,101)(24,102,111)(29,40,93)(30,94,37)(31,38,95)(32,96,39)(33,44,57)(34,58,41)(35,42,59)(36,60,43)(53,117,144)(54,141,118)(55,119,142)(56,143,120)(61,99,115)(62,116,100)(63,97,113)(64,114,98)(73,122,134)(74,135,123)(75,124,136)(76,133,121)(77,128,130)(78,131,125)(79,126,132)(80,129,127)(85,140,92)(86,89,137)(87,138,90)(88,91,139), (1,32,23)(2,24,29)(3,30,21)(4,22,31)(5,47,35)(6,36,48)(7,45,33)(8,34,46)(9,97,118)(10,119,98)(11,99,120)(12,117,100)(13,50,43)(14,44,51)(15,52,41)(16,42,49)(17,37,103)(18,104,38)(19,39,101)(20,102,40)(25,65,58)(26,59,66)(27,67,60)(28,57,68)(53,116,81)(54,82,113)(55,114,83)(56,84,115)(61,143,108)(62,105,144)(63,141,106)(64,107,142)(69,96,110)(70,111,93)(71,94,112)(72,109,95)(73,89,78)(74,79,90)(75,91,80)(76,77,92)(85,133,128)(86,125,134)(87,135,126)(88,127,136)(121,130,140)(122,137,131)(123,132,138)(124,139,129), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,9,3,11)(2,12,4,10)(5,138,7,140)(6,137,8,139)(13,134,15,136)(14,133,16,135)(17,84,19,82)(18,83,20,81)(21,120,23,118)(22,119,24,117)(25,75,27,73)(26,74,28,76)(29,100,31,98)(30,99,32,97)(33,130,35,132)(34,129,36,131)(37,115,39,113)(38,114,40,116)(41,127,43,125)(42,126,44,128)(45,121,47,123)(46,124,48,122)(49,87,51,85)(50,86,52,88)(53,104,55,102)(54,103,56,101)(57,77,59,79)(58,80,60,78)(61,96,63,94)(62,95,64,93)(65,91,67,89)(66,90,68,92)(69,106,71,108)(70,105,72,107)(109,142,111,144)(110,141,112,143)>;

G:=Group( (1,27)(2,28)(3,25)(4,26)(5,38)(6,39)(7,40)(8,37)(9,73)(10,74)(11,75)(12,76)(13,69)(14,70)(15,71)(16,72)(17,46)(18,47)(19,48)(20,45)(21,58)(22,59)(23,60)(24,57)(29,68)(30,65)(31,66)(32,67)(33,102)(34,103)(35,104)(36,101)(41,112)(42,109)(43,110)(44,111)(49,95)(50,96)(51,93)(52,94)(53,130)(54,131)(55,132)(56,129)(61,88)(62,85)(63,86)(64,87)(77,117)(78,118)(79,119)(80,120)(81,121)(82,122)(83,123)(84,124)(89,97)(90,98)(91,99)(92,100)(105,133)(106,134)(107,135)(108,136)(113,137)(114,138)(115,139)(116,140)(125,141)(126,142)(127,143)(128,144), (5,49,66)(6,50,67)(7,51,68)(8,52,65)(21,112,103)(22,109,104)(23,110,101)(24,111,102)(29,40,93)(30,37,94)(31,38,95)(32,39,96)(33,57,44)(34,58,41)(35,59,42)(36,60,43)(53,144,117)(54,141,118)(55,142,119)(56,143,120)(61,115,99)(62,116,100)(63,113,97)(64,114,98)(77,130,128)(78,131,125)(79,132,126)(80,129,127)(85,140,92)(86,137,89)(87,138,90)(88,139,91), (1,69,19)(2,20,70)(3,71,17)(4,18,72)(5,49,66)(6,67,50)(7,51,68)(8,65,52)(9,82,106)(10,107,83)(11,84,108)(12,105,81)(13,48,27)(14,28,45)(15,46,25)(16,26,47)(21,112,103)(22,104,109)(23,110,101)(24,102,111)(29,40,93)(30,94,37)(31,38,95)(32,96,39)(33,44,57)(34,58,41)(35,42,59)(36,60,43)(53,117,144)(54,141,118)(55,119,142)(56,143,120)(61,99,115)(62,116,100)(63,97,113)(64,114,98)(73,122,134)(74,135,123)(75,124,136)(76,133,121)(77,128,130)(78,131,125)(79,126,132)(80,129,127)(85,140,92)(86,89,137)(87,138,90)(88,91,139), (1,32,23)(2,24,29)(3,30,21)(4,22,31)(5,47,35)(6,36,48)(7,45,33)(8,34,46)(9,97,118)(10,119,98)(11,99,120)(12,117,100)(13,50,43)(14,44,51)(15,52,41)(16,42,49)(17,37,103)(18,104,38)(19,39,101)(20,102,40)(25,65,58)(26,59,66)(27,67,60)(28,57,68)(53,116,81)(54,82,113)(55,114,83)(56,84,115)(61,143,108)(62,105,144)(63,141,106)(64,107,142)(69,96,110)(70,111,93)(71,94,112)(72,109,95)(73,89,78)(74,79,90)(75,91,80)(76,77,92)(85,133,128)(86,125,134)(87,135,126)(88,127,136)(121,130,140)(122,137,131)(123,132,138)(124,139,129), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,9,3,11)(2,12,4,10)(5,138,7,140)(6,137,8,139)(13,134,15,136)(14,133,16,135)(17,84,19,82)(18,83,20,81)(21,120,23,118)(22,119,24,117)(25,75,27,73)(26,74,28,76)(29,100,31,98)(30,99,32,97)(33,130,35,132)(34,129,36,131)(37,115,39,113)(38,114,40,116)(41,127,43,125)(42,126,44,128)(45,121,47,123)(46,124,48,122)(49,87,51,85)(50,86,52,88)(53,104,55,102)(54,103,56,101)(57,77,59,79)(58,80,60,78)(61,96,63,94)(62,95,64,93)(65,91,67,89)(66,90,68,92)(69,106,71,108)(70,105,72,107)(109,142,111,144)(110,141,112,143) );

G=PermutationGroup([[(1,27),(2,28),(3,25),(4,26),(5,38),(6,39),(7,40),(8,37),(9,73),(10,74),(11,75),(12,76),(13,69),(14,70),(15,71),(16,72),(17,46),(18,47),(19,48),(20,45),(21,58),(22,59),(23,60),(24,57),(29,68),(30,65),(31,66),(32,67),(33,102),(34,103),(35,104),(36,101),(41,112),(42,109),(43,110),(44,111),(49,95),(50,96),(51,93),(52,94),(53,130),(54,131),(55,132),(56,129),(61,88),(62,85),(63,86),(64,87),(77,117),(78,118),(79,119),(80,120),(81,121),(82,122),(83,123),(84,124),(89,97),(90,98),(91,99),(92,100),(105,133),(106,134),(107,135),(108,136),(113,137),(114,138),(115,139),(116,140),(125,141),(126,142),(127,143),(128,144)], [(5,49,66),(6,50,67),(7,51,68),(8,52,65),(21,112,103),(22,109,104),(23,110,101),(24,111,102),(29,40,93),(30,37,94),(31,38,95),(32,39,96),(33,57,44),(34,58,41),(35,59,42),(36,60,43),(53,144,117),(54,141,118),(55,142,119),(56,143,120),(61,115,99),(62,116,100),(63,113,97),(64,114,98),(77,130,128),(78,131,125),(79,132,126),(80,129,127),(85,140,92),(86,137,89),(87,138,90),(88,139,91)], [(1,69,19),(2,20,70),(3,71,17),(4,18,72),(5,49,66),(6,67,50),(7,51,68),(8,65,52),(9,82,106),(10,107,83),(11,84,108),(12,105,81),(13,48,27),(14,28,45),(15,46,25),(16,26,47),(21,112,103),(22,104,109),(23,110,101),(24,102,111),(29,40,93),(30,94,37),(31,38,95),(32,96,39),(33,44,57),(34,58,41),(35,42,59),(36,60,43),(53,117,144),(54,141,118),(55,119,142),(56,143,120),(61,99,115),(62,116,100),(63,97,113),(64,114,98),(73,122,134),(74,135,123),(75,124,136),(76,133,121),(77,128,130),(78,131,125),(79,126,132),(80,129,127),(85,140,92),(86,89,137),(87,138,90),(88,91,139)], [(1,32,23),(2,24,29),(3,30,21),(4,22,31),(5,47,35),(6,36,48),(7,45,33),(8,34,46),(9,97,118),(10,119,98),(11,99,120),(12,117,100),(13,50,43),(14,44,51),(15,52,41),(16,42,49),(17,37,103),(18,104,38),(19,39,101),(20,102,40),(25,65,58),(26,59,66),(27,67,60),(28,57,68),(53,116,81),(54,82,113),(55,114,83),(56,84,115),(61,143,108),(62,105,144),(63,141,106),(64,107,142),(69,96,110),(70,111,93),(71,94,112),(72,109,95),(73,89,78),(74,79,90),(75,91,80),(76,77,92),(85,133,128),(86,125,134),(87,135,126),(88,127,136),(121,130,140),(122,137,131),(123,132,138),(124,139,129)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144)], [(1,9,3,11),(2,12,4,10),(5,138,7,140),(6,137,8,139),(13,134,15,136),(14,133,16,135),(17,84,19,82),(18,83,20,81),(21,120,23,118),(22,119,24,117),(25,75,27,73),(26,74,28,76),(29,100,31,98),(30,99,32,97),(33,130,35,132),(34,129,36,131),(37,115,39,113),(38,114,40,116),(41,127,43,125),(42,126,44,128),(45,121,47,123),(46,124,48,122),(49,87,51,85),(50,86,52,88),(53,104,55,102),(54,103,56,101),(57,77,59,79),(58,80,60,78),(61,96,63,94),(62,95,64,93),(65,91,67,89),(66,90,68,92),(69,106,71,108),(70,105,72,107),(109,142,111,144),(110,141,112,143)]])

38 conjugacy classes

class 1 2A2B2C3A3B3C3D4A···4F6A6B6C6D···6I6J6K6L12A···12L
order122233334···46666···666612···12
size11112661218···182226···612121218···18

38 irreducible representations

dim111122222444666
type+++++-++-+-++-+
imageC1C2C2C2S3Q8D6D6Dic6S32C322Q8C2×S32C32⋊D6He32Q8C2×C32⋊D6
kernelC2×He32Q8He32Q8C2×C32⋊C12C2×He33C4C2×C3⋊Dic3C2×He3C3⋊Dic3C62C3×C6C2×C6C6C6C22C2C2
# reps142122428121242

Matrix representation of C2×He32Q8 in GL10(𝔽13)

12000000000
01200000000
00120000000
00012000000
0000100000
0000010000
0000001000
0000000100
0000000010
0000000001
,
121200000000
1000000000
001212000000
0010000000
0000100000
0000190000
00001003000
0000000100
0000000190
00000001003
,
1000000000
0100000000
0010000000
0001000000
0000900000
0000090000
0000009000
0000000300
0000000030
0000000003
,
12010000000
01201000000
12000000000
01200000000
0000180000
00000121000
00000120000
0000000108
00000000012
00000000112
,
7171000000
126126000000
12612000000
111217000000
0000000100
0000000010
0000000001
00001200000
00000120000
00000012000
,
0209000000
2090000000
04011000000
40110000000
0000000800
0000000008
0000000080
0000800000
0000008000
0000080000

G:=sub<GL(10,GF(13))| [12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1],[12,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,1,1,10,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,1,1,10,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,3],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,3],[12,0,12,0,0,0,0,0,0,0,0,12,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,8,12,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,8,12,12],[7,12,1,11,0,0,0,0,0,0,1,6,2,12,0,0,0,0,0,0,7,12,6,1,0,0,0,0,0,0,1,6,12,7,0,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0],[0,2,0,4,0,0,0,0,0,0,2,0,4,0,0,0,0,0,0,0,0,9,0,11,0,0,0,0,0,0,9,0,11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,8,0,0,0,0] >;

C2×He32Q8 in GAP, Magma, Sage, TeX

C_2\times {\rm He}_3\rtimes_2Q_8
% in TeX

G:=Group("C2xHe3:2Q8");
// GroupNames label

G:=SmallGroup(432,316);
// by ID

G=gap.SmallGroup(432,316);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,141,64,571,4037,537,14118,7069]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^4=1,f^2=e^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,d*b*d^-1=b*c^-1,b*e=e*b,f*b*f^-1=b^-1,c*d=d*c,e*c*e^-1=f*c*f^-1=c^-1,e*d*e^-1=d^-1,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽