Extensions 1→N→G→Q→1 with N=C3xC3:S3 and Q=C2xC4

Direct product G=NxQ with N=C3xC3:S3 and Q=C2xC4
dρLabelID
C3:S3xC2xC12144C3:S3xC2xC12432,711

Semidirect products G=N:Q with N=C3xC3:S3 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C3xC3:S3):1(C2xC4) = S32xDic3φ: C2xC4/C2C22 ⊆ Out C3xC3:S3488-(C3xC3:S3):1(C2xC4)432,594
(C3xC3:S3):2(C2xC4) = S3xC6.D6φ: C2xC4/C2C22 ⊆ Out C3xC3:S3248+(C3xC3:S3):2(C2xC4)432,595
(C3xC3:S3):3(C2xC4) = Dic3:6S32φ: C2xC4/C2C22 ⊆ Out C3xC3:S3488-(C3xC3:S3):3(C2xC4)432,596
(C3xC3:S3):4(C2xC4) = C2xS3xC32:C4φ: C2xC4/C2C22 ⊆ Out C3xC3:S3248+(C3xC3:S3):4(C2xC4)432,753
(C3xC3:S3):5(C2xC4) = S32xC12φ: C2xC4/C4C2 ⊆ Out C3xC3:S3484(C3xC3:S3):5(C2xC4)432,648
(C3xC3:S3):6(C2xC4) = C4xS3xC3:S3φ: C2xC4/C4C2 ⊆ Out C3xC3:S372(C3xC3:S3):6(C2xC4)432,670
(C3xC3:S3):7(C2xC4) = C4xC32:4D6φ: C2xC4/C4C2 ⊆ Out C3xC3:S3484(C3xC3:S3):7(C2xC4)432,690
(C3xC3:S3):8(C2xC4) = C6xC6.D6φ: C2xC4/C22C2 ⊆ Out C3xC3:S348(C3xC3:S3):8(C2xC4)432,654
(C3xC3:S3):9(C2xC4) = C2xC6xC32:C4φ: C2xC4/C22C2 ⊆ Out C3xC3:S348(C3xC3:S3):9(C2xC4)432,765
(C3xC3:S3):10(C2xC4) = C2xDic3xC3:S3φ: C2xC4/C22C2 ⊆ Out C3xC3:S3144(C3xC3:S3):10(C2xC4)432,677
(C3xC3:S3):11(C2xC4) = C2xC33:9(C2xC4)φ: C2xC4/C22C2 ⊆ Out C3xC3:S348(C3xC3:S3):11(C2xC4)432,692
(C3xC3:S3):12(C2xC4) = C22xC33:C4φ: C2xC4/C22C2 ⊆ Out C3xC3:S348(C3xC3:S3):12(C2xC4)432,766

Non-split extensions G=N.Q with N=C3xC3:S3 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C3xC3:S3).(C2xC4) = S3xF9φ: C2xC4/C1C2xC4 ⊆ Out C3xC3:S32416+(C3xC3:S3).(C2xC4)432,736
(C3xC3:S3).2(C2xC4) = C6xF9φ: C2xC4/C2C4 ⊆ Out C3xC3:S3488(C3xC3:S3).2(C2xC4)432,751
(C3xC3:S3).3(C2xC4) = C2xC3:F9φ: C2xC4/C2C4 ⊆ Out C3xC3:S3488(C3xC3:S3).3(C2xC4)432,752
(C3xC3:S3).4(C2xC4) = C3xS32:C4φ: C2xC4/C2C22 ⊆ Out C3xC3:S3244(C3xC3:S3).4(C2xC4)432,574
(C3xC3:S3).5(C2xC4) = C3xC3:S3.Q8φ: C2xC4/C2C22 ⊆ Out C3xC3:S3484(C3xC3:S3).5(C2xC4)432,575
(C3xC3:S3).6(C2xC4) = C3xC2.PSU3(F2)φ: C2xC4/C2C22 ⊆ Out C3xC3:S3488(C3xC3:S3).6(C2xC4)432,591
(C3xC3:S3).7(C2xC4) = Dic3xC32:C4φ: C2xC4/C2C22 ⊆ Out C3xC3:S3488-(C3xC3:S3).7(C2xC4)432,567
(C3xC3:S3).8(C2xC4) = C3:S3.2D12φ: C2xC4/C2C22 ⊆ Out C3xC3:S3244(C3xC3:S3).8(C2xC4)432,579
(C3xC3:S3).9(C2xC4) = S32:Dic3φ: C2xC4/C2C22 ⊆ Out C3xC3:S3244(C3xC3:S3).9(C2xC4)432,580
(C3xC3:S3).10(C2xC4) = C33:C4:C4φ: C2xC4/C2C22 ⊆ Out C3xC3:S3484(C3xC3:S3).10(C2xC4)432,581
(C3xC3:S3).11(C2xC4) = (C3xC6).8D12φ: C2xC4/C2C22 ⊆ Out C3xC3:S3248+(C3xC3:S3).11(C2xC4)432,586
(C3xC3:S3).12(C2xC4) = (C3xC6).9D12φ: C2xC4/C2C22 ⊆ Out C3xC3:S3488-(C3xC3:S3).12(C2xC4)432,587
(C3xC3:S3).13(C2xC4) = C6.PSU3(F2)φ: C2xC4/C2C22 ⊆ Out C3xC3:S3488(C3xC3:S3).13(C2xC4)432,592
(C3xC3:S3).14(C2xC4) = C6.2PSU3(F2)φ: C2xC4/C2C22 ⊆ Out C3xC3:S3488(C3xC3:S3).14(C2xC4)432,593
(C3xC3:S3).15(C2xC4) = C12xC32:C4φ: C2xC4/C4C2 ⊆ Out C3xC3:S3484(C3xC3:S3).15(C2xC4)432,630
(C3xC3:S3).16(C2xC4) = C4xC33:C4φ: C2xC4/C4C2 ⊆ Out C3xC3:S3484(C3xC3:S3).16(C2xC4)432,637

׿
x
:
Z
F
o
wr
Q
<