extension | φ:Q→Out N | d | ρ | Label | ID |
(C3xC3:S3).(C2xC4) = S3xF9 | φ: C2xC4/C1 → C2xC4 ⊆ Out C3xC3:S3 | 24 | 16+ | (C3xC3:S3).(C2xC4) | 432,736 |
(C3xC3:S3).2(C2xC4) = C6xF9 | φ: C2xC4/C2 → C4 ⊆ Out C3xC3:S3 | 48 | 8 | (C3xC3:S3).2(C2xC4) | 432,751 |
(C3xC3:S3).3(C2xC4) = C2xC3:F9 | φ: C2xC4/C2 → C4 ⊆ Out C3xC3:S3 | 48 | 8 | (C3xC3:S3).3(C2xC4) | 432,752 |
(C3xC3:S3).4(C2xC4) = C3xS32:C4 | φ: C2xC4/C2 → C22 ⊆ Out C3xC3:S3 | 24 | 4 | (C3xC3:S3).4(C2xC4) | 432,574 |
(C3xC3:S3).5(C2xC4) = C3xC3:S3.Q8 | φ: C2xC4/C2 → C22 ⊆ Out C3xC3:S3 | 48 | 4 | (C3xC3:S3).5(C2xC4) | 432,575 |
(C3xC3:S3).6(C2xC4) = C3xC2.PSU3(F2) | φ: C2xC4/C2 → C22 ⊆ Out C3xC3:S3 | 48 | 8 | (C3xC3:S3).6(C2xC4) | 432,591 |
(C3xC3:S3).7(C2xC4) = Dic3xC32:C4 | φ: C2xC4/C2 → C22 ⊆ Out C3xC3:S3 | 48 | 8- | (C3xC3:S3).7(C2xC4) | 432,567 |
(C3xC3:S3).8(C2xC4) = C3:S3.2D12 | φ: C2xC4/C2 → C22 ⊆ Out C3xC3:S3 | 24 | 4 | (C3xC3:S3).8(C2xC4) | 432,579 |
(C3xC3:S3).9(C2xC4) = S32:Dic3 | φ: C2xC4/C2 → C22 ⊆ Out C3xC3:S3 | 24 | 4 | (C3xC3:S3).9(C2xC4) | 432,580 |
(C3xC3:S3).10(C2xC4) = C33:C4:C4 | φ: C2xC4/C2 → C22 ⊆ Out C3xC3:S3 | 48 | 4 | (C3xC3:S3).10(C2xC4) | 432,581 |
(C3xC3:S3).11(C2xC4) = (C3xC6).8D12 | φ: C2xC4/C2 → C22 ⊆ Out C3xC3:S3 | 24 | 8+ | (C3xC3:S3).11(C2xC4) | 432,586 |
(C3xC3:S3).12(C2xC4) = (C3xC6).9D12 | φ: C2xC4/C2 → C22 ⊆ Out C3xC3:S3 | 48 | 8- | (C3xC3:S3).12(C2xC4) | 432,587 |
(C3xC3:S3).13(C2xC4) = C6.PSU3(F2) | φ: C2xC4/C2 → C22 ⊆ Out C3xC3:S3 | 48 | 8 | (C3xC3:S3).13(C2xC4) | 432,592 |
(C3xC3:S3).14(C2xC4) = C6.2PSU3(F2) | φ: C2xC4/C2 → C22 ⊆ Out C3xC3:S3 | 48 | 8 | (C3xC3:S3).14(C2xC4) | 432,593 |
(C3xC3:S3).15(C2xC4) = C12xC32:C4 | φ: C2xC4/C4 → C2 ⊆ Out C3xC3:S3 | 48 | 4 | (C3xC3:S3).15(C2xC4) | 432,630 |
(C3xC3:S3).16(C2xC4) = C4xC33:C4 | φ: C2xC4/C4 → C2 ⊆ Out C3xC3:S3 | 48 | 4 | (C3xC3:S3).16(C2xC4) | 432,637 |