Generators in S
48
(1 7 38)(2 8 39)(3 5 40)(4 6 37)(9 14 46)(10 15 47)(11 16 48)(12 13 45)(17 26 42)(18 27 43)(19 28 44)(20 25 41)(21 35 30)(22 36 31)(23 33 32)(24 34 29)
(1 27)(2 28)(3 25)(4 26)(5 41)(6 42)(7 43)(8 44)(9 33)(10 34)(11 35)(12 36)(13 31)(14 32)(15 29)(16 30)(17 37)(18 38)(19 39)(20 40)(21 48)(22 45)(23 46)(24 47)
(2 39 8)(4 6 37)(9 46 14)(10 15 47)(11 16 48)(12 45 13)(17 26 42)(19 44 28)(21 35 30)(22 31 36)(23 32 33)(24 34 29)
(1 7 38)(3 40 5)(9 46 14)(10 47 15)(11 16 48)(12 13 45)(18 27 43)(20 41 25)(21 35 30)(22 36 31)(23 32 33)(24 29 34)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 35 25 9)(2 10 26 36)(3 33 27 11)(4 12 28 34)(5 32 43 16)(6 13 44 29)(7 30 41 14)(8 15 42 31)(17 22 39 47)(18 48 40 23)(19 24 37 45)(20 46 38 21)
G:=sub<Sym(48)| (1,7,38)(2,8,39)(3,5,40)(4,6,37)(9,14,46)(10,15,47)(11,16,48)(12,13,45)(17,26,42)(18,27,43)(19,28,44)(20,25,41)(21,35,30)(22,36,31)(23,33,32)(24,34,29), (1,27)(2,28)(3,25)(4,26)(5,41)(6,42)(7,43)(8,44)(9,33)(10,34)(11,35)(12,36)(13,31)(14,32)(15,29)(16,30)(17,37)(18,38)(19,39)(20,40)(21,48)(22,45)(23,46)(24,47), (2,39,8)(4,6,37)(9,46,14)(10,15,47)(11,16,48)(12,45,13)(17,26,42)(19,44,28)(21,35,30)(22,31,36)(23,32,33)(24,34,29), (1,7,38)(3,40,5)(9,46,14)(10,47,15)(11,16,48)(12,13,45)(18,27,43)(20,41,25)(21,35,30)(22,36,31)(23,32,33)(24,29,34), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,35,25,9)(2,10,26,36)(3,33,27,11)(4,12,28,34)(5,32,43,16)(6,13,44,29)(7,30,41,14)(8,15,42,31)(17,22,39,47)(18,48,40,23)(19,24,37,45)(20,46,38,21)>;
G:=Group( (1,7,38)(2,8,39)(3,5,40)(4,6,37)(9,14,46)(10,15,47)(11,16,48)(12,13,45)(17,26,42)(18,27,43)(19,28,44)(20,25,41)(21,35,30)(22,36,31)(23,33,32)(24,34,29), (1,27)(2,28)(3,25)(4,26)(5,41)(6,42)(7,43)(8,44)(9,33)(10,34)(11,35)(12,36)(13,31)(14,32)(15,29)(16,30)(17,37)(18,38)(19,39)(20,40)(21,48)(22,45)(23,46)(24,47), (2,39,8)(4,6,37)(9,46,14)(10,15,47)(11,16,48)(12,45,13)(17,26,42)(19,44,28)(21,35,30)(22,31,36)(23,32,33)(24,34,29), (1,7,38)(3,40,5)(9,46,14)(10,47,15)(11,16,48)(12,13,45)(18,27,43)(20,41,25)(21,35,30)(22,36,31)(23,32,33)(24,29,34), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,35,25,9)(2,10,26,36)(3,33,27,11)(4,12,28,34)(5,32,43,16)(6,13,44,29)(7,30,41,14)(8,15,42,31)(17,22,39,47)(18,48,40,23)(19,24,37,45)(20,46,38,21) );
G=PermutationGroup([[(1,7,38),(2,8,39),(3,5,40),(4,6,37),(9,14,46),(10,15,47),(11,16,48),(12,13,45),(17,26,42),(18,27,43),(19,28,44),(20,25,41),(21,35,30),(22,36,31),(23,33,32),(24,34,29)], [(1,27),(2,28),(3,25),(4,26),(5,41),(6,42),(7,43),(8,44),(9,33),(10,34),(11,35),(12,36),(13,31),(14,32),(15,29),(16,30),(17,37),(18,38),(19,39),(20,40),(21,48),(22,45),(23,46),(24,47)], [(2,39,8),(4,6,37),(9,46,14),(10,15,47),(11,16,48),(12,45,13),(17,26,42),(19,44,28),(21,35,30),(22,31,36),(23,32,33),(24,34,29)], [(1,7,38),(3,40,5),(9,46,14),(10,47,15),(11,16,48),(12,13,45),(18,27,43),(20,41,25),(21,35,30),(22,36,31),(23,32,33),(24,29,34)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,35,25,9),(2,10,26,36),(3,33,27,11),(4,12,28,34),(5,32,43,16),(6,13,44,29),(7,30,41,14),(8,15,42,31),(17,22,39,47),(18,48,40,23),(19,24,37,45),(20,46,38,21)]])
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 9 |
,
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
,
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 3 | 9 | 0 | 0 |
8 | 12 | 0 | 7 | 11 | 0 | 9 | 0 |
3 | 2 | 4 | 0 | 0 | 0 | 0 | 3 |
,
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 9 | 4 | 3 | 9 | 0 | 0 |
7 | 0 | 3 | 11 | 0 | 0 | 3 | 0 |
0 | 6 | 12 | 5 | 11 | 0 | 0 | 9 |
,
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 2 | 3 | 11 | 8 | 0 | 0 | 2 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 12 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 5 |
,
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 1 | 2 | 0 | 0 |
2 | 3 | 3 | 11 | 8 | 0 | 2 | 0 |
3 | 2 | 3 | 11 | 8 | 0 | 0 | 2 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 12 |
0 | 0 | 0 | 0 | 0 | 10 | 10 | 2 |
0 | 0 | 0 | 0 | 0 | 11 | 10 | 2 |
G:=sub<GL(8,GF(13))| [9,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,9],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[1,0,0,0,0,0,8,3,0,1,0,0,0,0,12,2,0,0,9,0,0,0,0,4,0,0,0,3,0,3,7,0,0,0,0,0,3,3,11,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,3],[9,0,0,0,0,0,7,0,0,3,0,0,0,0,0,6,0,0,1,0,0,9,3,12,0,0,0,1,0,4,11,5,0,0,0,0,3,3,0,11,0,0,0,0,0,9,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,9],[0,0,0,12,3,0,0,0,0,0,12,0,2,0,0,0,1,0,0,0,3,0,0,0,0,1,0,0,11,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,1,0,0,0,0,0,0,2,12,5,5],[0,0,2,3,0,0,0,0,0,0,3,2,1,0,0,0,0,12,3,3,0,0,0,0,0,1,11,11,0,0,0,0,1,1,8,8,0,0,0,0,0,2,0,0,0,0,10,11,0,0,2,0,0,1,10,10,0,0,0,2,0,12,2,2] >;