# Extensions 1→N→G→Q→1 with N=C3×D4 and Q=C3×C6

Direct product G=N×Q with N=C3×D4 and Q=C3×C6
dρLabelID
D4×C32×C6216D4xC3^2xC6432,731

Semidirect products G=N:Q with N=C3×D4 and Q=C3×C6
extensionφ:Q→Out NdρLabelID
(C3×D4)⋊1(C3×C6) = C32×D4⋊S3φ: C3×C6/C32C2 ⊆ Out C3×D472(C3xD4):1(C3xC6)432,475
(C3×D4)⋊2(C3×C6) = S3×D4×C32φ: C3×C6/C32C2 ⊆ Out C3×D472(C3xD4):2(C3xC6)432,704
(C3×D4)⋊3(C3×C6) = C32×D42S3φ: C3×C6/C32C2 ⊆ Out C3×D472(C3xD4):3(C3xC6)432,705
(C3×D4)⋊4(C3×C6) = D8×C33φ: C3×C6/C32C2 ⊆ Out C3×D4216(C3xD4):4(C3xC6)432,517
(C3×D4)⋊5(C3×C6) = C4○D4×C33φ: trivial image216(C3xD4):5(C3xC6)432,733

Non-split extensions G=N.Q with N=C3×D4 and Q=C3×C6
extensionφ:Q→Out NdρLabelID
(C3×D4).1(C3×C6) = C32×D4.S3φ: C3×C6/C32C2 ⊆ Out C3×D472(C3xD4).1(C3xC6)432,476
(C3×D4).2(C3×C6) = D8×C3×C9φ: C3×C6/C32C2 ⊆ Out C3×D4216(C3xD4).2(C3xC6)432,215
(C3×D4).3(C3×C6) = D8×He3φ: C3×C6/C32C2 ⊆ Out C3×D4726(C3xD4).3(C3xC6)432,216
(C3×D4).4(C3×C6) = D8×3- 1+2φ: C3×C6/C32C2 ⊆ Out C3×D4726(C3xD4).4(C3xC6)432,217
(C3×D4).5(C3×C6) = SD16×C3×C9φ: C3×C6/C32C2 ⊆ Out C3×D4216(C3xD4).5(C3xC6)432,218
(C3×D4).6(C3×C6) = SD16×He3φ: C3×C6/C32C2 ⊆ Out C3×D4726(C3xD4).6(C3xC6)432,219
(C3×D4).7(C3×C6) = SD16×3- 1+2φ: C3×C6/C32C2 ⊆ Out C3×D4726(C3xD4).7(C3xC6)432,220
(C3×D4).8(C3×C6) = SD16×C33φ: C3×C6/C32C2 ⊆ Out C3×D4216(C3xD4).8(C3xC6)432,518
(C3×D4).9(C3×C6) = D4×C3×C18φ: trivial image216(C3xD4).9(C3xC6)432,403
(C3×D4).10(C3×C6) = C2×D4×He3φ: trivial image72(C3xD4).10(C3xC6)432,404
(C3×D4).11(C3×C6) = C2×D4×3- 1+2φ: trivial image72(C3xD4).11(C3xC6)432,405
(C3×D4).12(C3×C6) = C4○D4×C3×C9φ: trivial image216(C3xD4).12(C3xC6)432,409
(C3×D4).13(C3×C6) = C4○D4×He3φ: trivial image726(C3xD4).13(C3xC6)432,410
(C3×D4).14(C3×C6) = C4○D4×3- 1+2φ: trivial image726(C3xD4).14(C3xC6)432,411

׿
×
𝔽