Copied to
clipboard

G = C2×D4×He3order 432 = 24·33

Direct product of C2, D4 and He3

direct product, metabelian, nilpotent (class 2), monomial

Series: Derived Chief Lower central Upper central

 Derived series C1 — C6 — C2×D4×He3
 Chief series C1 — C3 — C6 — C3×C6 — C2×He3 — C22×He3 — D4×He3 — C2×D4×He3
 Lower central C1 — C6 — C2×D4×He3
 Upper central C1 — C2×C6 — C2×D4×He3

Generators and relations for C2×D4×He3
G = < a,b,c,d,e,f | a2=b4=c2=d3=e3=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, cbc=b-1, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf-1=de-1, ef=fe >

Subgroups: 665 in 297 conjugacy classes, 133 normal (15 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, D4, C23, C32, C12, C12, C2×C6, C2×C6, C2×C6, C2×D4, C3×C6, C3×C6, C2×C12, C2×C12, C3×D4, C3×D4, C22×C6, C22×C6, He3, C3×C12, C62, C62, C6×D4, C6×D4, C2×He3, C2×He3, C2×He3, C6×C12, D4×C32, C2×C62, C4×He3, C22×He3, C22×He3, C22×He3, D4×C3×C6, C2×C4×He3, D4×He3, C23×He3, C2×D4×He3
Quotients: C1, C2, C3, C22, C6, D4, C23, C32, C2×C6, C2×D4, C3×C6, C3×D4, C22×C6, He3, C62, C6×D4, C2×He3, D4×C32, C2×C62, C22×He3, D4×C3×C6, D4×He3, C23×He3, C2×D4×He3

Smallest permutation representation of C2×D4×He3
On 72 points
Generators in S72
(1 15)(2 16)(3 13)(4 14)(5 65)(6 66)(7 67)(8 68)(9 31)(10 32)(11 29)(12 30)(17 25)(18 26)(19 27)(20 28)(21 59)(22 60)(23 57)(24 58)(33 41)(34 42)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)(49 71)(50 72)(51 69)(52 70)(53 61)(54 62)(55 63)(56 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 16)(2 15)(3 14)(4 13)(5 66)(6 65)(7 68)(8 67)(9 32)(10 31)(11 30)(12 29)(17 26)(18 25)(19 28)(20 27)(21 60)(22 59)(23 58)(24 57)(33 42)(34 41)(35 44)(36 43)(37 46)(38 45)(39 48)(40 47)(49 72)(50 71)(51 70)(52 69)(53 62)(54 61)(55 64)(56 63)
(1 63 41)(2 64 42)(3 61 43)(4 62 44)(5 45 27)(6 46 28)(7 47 25)(8 48 26)(9 49 57)(10 50 58)(11 51 59)(12 52 60)(13 53 35)(14 54 36)(15 55 33)(16 56 34)(17 67 39)(18 68 40)(19 65 37)(20 66 38)(21 29 69)(22 30 70)(23 31 71)(24 32 72)
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 67 29)(14 68 30)(15 65 31)(16 66 32)(17 21 35)(18 22 36)(19 23 33)(20 24 34)(25 59 43)(26 60 44)(27 57 41)(28 58 42)(37 71 55)(38 72 56)(39 69 53)(40 70 54)(45 49 63)(46 50 64)(47 51 61)(48 52 62)
(17 35 21)(18 36 22)(19 33 23)(20 34 24)(25 43 59)(26 44 60)(27 41 57)(28 42 58)(37 71 55)(38 72 56)(39 69 53)(40 70 54)(45 49 63)(46 50 64)(47 51 61)(48 52 62)

G:=sub<Sym(72)| (1,15)(2,16)(3,13)(4,14)(5,65)(6,66)(7,67)(8,68)(9,31)(10,32)(11,29)(12,30)(17,25)(18,26)(19,27)(20,28)(21,59)(22,60)(23,57)(24,58)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,71)(50,72)(51,69)(52,70)(53,61)(54,62)(55,63)(56,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,16)(2,15)(3,14)(4,13)(5,66)(6,65)(7,68)(8,67)(9,32)(10,31)(11,30)(12,29)(17,26)(18,25)(19,28)(20,27)(21,60)(22,59)(23,58)(24,57)(33,42)(34,41)(35,44)(36,43)(37,46)(38,45)(39,48)(40,47)(49,72)(50,71)(51,70)(52,69)(53,62)(54,61)(55,64)(56,63), (1,63,41)(2,64,42)(3,61,43)(4,62,44)(5,45,27)(6,46,28)(7,47,25)(8,48,26)(9,49,57)(10,50,58)(11,51,59)(12,52,60)(13,53,35)(14,54,36)(15,55,33)(16,56,34)(17,67,39)(18,68,40)(19,65,37)(20,66,38)(21,29,69)(22,30,70)(23,31,71)(24,32,72), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,67,29)(14,68,30)(15,65,31)(16,66,32)(17,21,35)(18,22,36)(19,23,33)(20,24,34)(25,59,43)(26,60,44)(27,57,41)(28,58,42)(37,71,55)(38,72,56)(39,69,53)(40,70,54)(45,49,63)(46,50,64)(47,51,61)(48,52,62), (17,35,21)(18,36,22)(19,33,23)(20,34,24)(25,43,59)(26,44,60)(27,41,57)(28,42,58)(37,71,55)(38,72,56)(39,69,53)(40,70,54)(45,49,63)(46,50,64)(47,51,61)(48,52,62)>;

G:=Group( (1,15)(2,16)(3,13)(4,14)(5,65)(6,66)(7,67)(8,68)(9,31)(10,32)(11,29)(12,30)(17,25)(18,26)(19,27)(20,28)(21,59)(22,60)(23,57)(24,58)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(49,71)(50,72)(51,69)(52,70)(53,61)(54,62)(55,63)(56,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,16)(2,15)(3,14)(4,13)(5,66)(6,65)(7,68)(8,67)(9,32)(10,31)(11,30)(12,29)(17,26)(18,25)(19,28)(20,27)(21,60)(22,59)(23,58)(24,57)(33,42)(34,41)(35,44)(36,43)(37,46)(38,45)(39,48)(40,47)(49,72)(50,71)(51,70)(52,69)(53,62)(54,61)(55,64)(56,63), (1,63,41)(2,64,42)(3,61,43)(4,62,44)(5,45,27)(6,46,28)(7,47,25)(8,48,26)(9,49,57)(10,50,58)(11,51,59)(12,52,60)(13,53,35)(14,54,36)(15,55,33)(16,56,34)(17,67,39)(18,68,40)(19,65,37)(20,66,38)(21,29,69)(22,30,70)(23,31,71)(24,32,72), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,67,29)(14,68,30)(15,65,31)(16,66,32)(17,21,35)(18,22,36)(19,23,33)(20,24,34)(25,59,43)(26,60,44)(27,57,41)(28,58,42)(37,71,55)(38,72,56)(39,69,53)(40,70,54)(45,49,63)(46,50,64)(47,51,61)(48,52,62), (17,35,21)(18,36,22)(19,33,23)(20,34,24)(25,43,59)(26,44,60)(27,41,57)(28,42,58)(37,71,55)(38,72,56)(39,69,53)(40,70,54)(45,49,63)(46,50,64)(47,51,61)(48,52,62) );

G=PermutationGroup([[(1,15),(2,16),(3,13),(4,14),(5,65),(6,66),(7,67),(8,68),(9,31),(10,32),(11,29),(12,30),(17,25),(18,26),(19,27),(20,28),(21,59),(22,60),(23,57),(24,58),(33,41),(34,42),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48),(49,71),(50,72),(51,69),(52,70),(53,61),(54,62),(55,63),(56,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,16),(2,15),(3,14),(4,13),(5,66),(6,65),(7,68),(8,67),(9,32),(10,31),(11,30),(12,29),(17,26),(18,25),(19,28),(20,27),(21,60),(22,59),(23,58),(24,57),(33,42),(34,41),(35,44),(36,43),(37,46),(38,45),(39,48),(40,47),(49,72),(50,71),(51,70),(52,69),(53,62),(54,61),(55,64),(56,63)], [(1,63,41),(2,64,42),(3,61,43),(4,62,44),(5,45,27),(6,46,28),(7,47,25),(8,48,26),(9,49,57),(10,50,58),(11,51,59),(12,52,60),(13,53,35),(14,54,36),(15,55,33),(16,56,34),(17,67,39),(18,68,40),(19,65,37),(20,66,38),(21,29,69),(22,30,70),(23,31,71),(24,32,72)], [(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,67,29),(14,68,30),(15,65,31),(16,66,32),(17,21,35),(18,22,36),(19,23,33),(20,24,34),(25,59,43),(26,60,44),(27,57,41),(28,58,42),(37,71,55),(38,72,56),(39,69,53),(40,70,54),(45,49,63),(46,50,64),(47,51,61),(48,52,62)], [(17,35,21),(18,36,22),(19,33,23),(20,34,24),(25,43,59),(26,44,60),(27,41,57),(28,42,58),(37,71,55),(38,72,56),(39,69,53),(40,70,54),(45,49,63),(46,50,64),(47,51,61),(48,52,62)]])

110 conjugacy classes

 class 1 2A 2B 2C 2D 2E 2F 2G 3A 3B 3C ··· 3J 4A 4B 6A ··· 6F 6G ··· 6N 6O ··· 6AL 6AM ··· 6BR 12A 12B 12C 12D 12E ··· 12T order 1 2 2 2 2 2 2 2 3 3 3 ··· 3 4 4 6 ··· 6 6 ··· 6 6 ··· 6 6 ··· 6 12 12 12 12 12 ··· 12 size 1 1 1 1 2 2 2 2 1 1 3 ··· 3 2 2 1 ··· 1 2 ··· 2 3 ··· 3 6 ··· 6 2 2 2 2 6 ··· 6

110 irreducible representations

 dim 1 1 1 1 1 1 1 1 2 2 3 3 3 3 6 type + + + + + image C1 C2 C2 C2 C3 C6 C6 C6 D4 C3×D4 He3 C2×He3 C2×He3 C2×He3 D4×He3 kernel C2×D4×He3 C2×C4×He3 D4×He3 C23×He3 D4×C3×C6 C6×C12 D4×C32 C2×C62 C2×He3 C3×C6 C2×D4 C2×C4 D4 C23 C2 # reps 1 1 4 2 8 8 32 16 2 16 2 2 8 4 4

Matrix representation of C2×D4×He3 in GL5(𝔽13)

 12 0 0 0 0 0 12 0 0 0 0 0 12 0 0 0 0 0 12 0 0 0 0 0 12
,
 12 8 0 0 0 3 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1
,
 12 8 0 0 0 0 1 0 0 0 0 0 12 0 0 0 0 0 12 0 0 0 0 0 12
,
 3 0 0 0 0 0 3 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0
,
 1 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0 0 0 3 0 0 0 0 0 3
,
 9 0 0 0 0 0 9 0 0 0 0 0 1 0 0 0 0 0 9 0 0 0 0 0 3

G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[12,3,0,0,0,8,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[12,0,0,0,0,8,1,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[3,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,3,0,0,0,0,0,3],[9,0,0,0,0,0,9,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,0,3] >;

C2×D4×He3 in GAP, Magma, Sage, TeX

C_2\times D_4\times {\rm He}_3
% in TeX

G:=Group("C2xD4xHe3");
// GroupNames label

G:=SmallGroup(432,404);
// by ID

G=gap.SmallGroup(432,404);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,-3,1037,760]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^4=c^2=d^3=e^3=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f^-1=d*e^-1,e*f=f*e>;
// generators/relations

׿
×
𝔽