# Extensions 1→N→G→Q→1 with N=C3×C3⋊S3 and Q=Q8

Direct product G=N×Q with N=C3×C3⋊S3 and Q=Q8
dρLabelID
C3×Q8×C3⋊S3144C3xQ8xC3:S3432,716

Semidirect products G=N:Q with N=C3×C3⋊S3 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C3×C3⋊S3)⋊1Q8 = C6×PSU3(𝔽2)φ: Q8/C2C22 ⊆ Out C3×C3⋊S3488(C3xC3:S3):1Q8432,757
(C3×C3⋊S3)⋊2Q8 = C335(C2×Q8)φ: Q8/C2C22 ⊆ Out C3×C3⋊S3488-(C3xC3:S3):2Q8432,604
(C3×C3⋊S3)⋊3Q8 = C2×C33⋊Q8φ: Q8/C2C22 ⊆ Out C3×C3⋊S3488(C3xC3:S3):3Q8432,758
(C3×C3⋊S3)⋊4Q8 = C3×Dic3.D6φ: Q8/C4C2 ⊆ Out C3×C3⋊S3484(C3xC3:S3):4Q8432,645
(C3×C3⋊S3)⋊5Q8 = C3⋊S3×Dic6φ: Q8/C4C2 ⊆ Out C3×C3⋊S3144(C3xC3:S3):5Q8432,663
(C3×C3⋊S3)⋊6Q8 = C3⋊S34Dic6φ: Q8/C4C2 ⊆ Out C3×C3⋊S3484(C3xC3:S3):6Q8432,687

Non-split extensions G=N.Q with N=C3×C3⋊S3 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C3×C3⋊S3).1Q8 = C3×C3⋊S3.Q8φ: Q8/C2C22 ⊆ Out C3×C3⋊S3484(C3xC3:S3).1Q8432,575
(C3×C3⋊S3).2Q8 = C33⋊(C4⋊C4)φ: Q8/C2C22 ⊆ Out C3×C3⋊S3488-(C3xC3:S3).2Q8432,569
(C3×C3⋊S3).3Q8 = C33⋊C4⋊C4φ: Q8/C2C22 ⊆ Out C3×C3⋊S3484(C3xC3:S3).3Q8432,581
(C3×C3⋊S3).4Q8 = (C3×C6).9D12φ: Q8/C2C22 ⊆ Out C3×C3⋊S3488-(C3xC3:S3).4Q8432,587
(C3×C3⋊S3).5Q8 = C3×C4⋊(C32⋊C4)φ: Q8/C4C2 ⊆ Out C3×C3⋊S3484(C3xC3:S3).5Q8432,631
(C3×C3⋊S3).6Q8 = C339(C4⋊C4)φ: Q8/C4C2 ⊆ Out C3×C3⋊S3484(C3xC3:S3).6Q8432,638

׿
×
𝔽