extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1S4 = C32.CSU2(𝔽3) | φ: S4/C22 → S3 ⊆ Aut C3×C6 | 144 | 12- | (C3xC6).1S4 | 432,243 |
(C3×C6).2S4 = C32.GL2(𝔽3) | φ: S4/C22 → S3 ⊆ Aut C3×C6 | 72 | 12+ | (C3xC6).2S4 | 432,245 |
(C3×C6).3S4 = C32⋊CSU2(𝔽3) | φ: S4/C22 → S3 ⊆ Aut C3×C6 | 144 | 12- | (C3xC6).3S4 | 432,247 |
(C3×C6).4S4 = C32⋊2GL2(𝔽3) | φ: S4/C22 → S3 ⊆ Aut C3×C6 | 72 | 12+ | (C3xC6).4S4 | 432,248 |
(C3×C6).5S4 = C62.Dic3 | φ: S4/C22 → S3 ⊆ Aut C3×C6 | 36 | 6- | (C3xC6).5S4 | 432,249 |
(C3×C6).6S4 = C62⋊5Dic3 | φ: S4/C22 → S3 ⊆ Aut C3×C6 | 36 | 6- | (C3xC6).6S4 | 432,251 |
(C3×C6).7S4 = C32⋊2CSU2(𝔽3) | φ: S4/C22 → S3 ⊆ Aut C3×C6 | 144 | 6 | (C3xC6).7S4 | 432,257 |
(C3×C6).8S4 = C32⋊3GL2(𝔽3) | φ: S4/C22 → S3 ⊆ Aut C3×C6 | 72 | 6 | (C3xC6).8S4 | 432,258 |
(C3×C6).9S4 = C62⋊6Dic3 | φ: S4/C22 → S3 ⊆ Aut C3×C6 | 36 | 3 | (C3xC6).9S4 | 432,260 |
(C3×C6).10S4 = C2×C32.S4 | φ: S4/C22 → S3 ⊆ Aut C3×C6 | 18 | 6+ | (C3xC6).10S4 | 432,533 |
(C3×C6).11S4 = C3×Q8.D9 | φ: S4/A4 → C2 ⊆ Aut C3×C6 | 144 | 4 | (C3xC6).11S4 | 432,244 |
(C3×C6).12S4 = C3×Q8⋊D9 | φ: S4/A4 → C2 ⊆ Aut C3×C6 | 144 | 4 | (C3xC6).12S4 | 432,246 |
(C3×C6).13S4 = C3×C6.S4 | φ: S4/A4 → C2 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).13S4 | 432,250 |
(C3×C6).14S4 = C32.3CSU2(𝔽3) | φ: S4/A4 → C2 ⊆ Aut C3×C6 | 432 | | (C3xC6).14S4 | 432,255 |
(C3×C6).15S4 = C32.3GL2(𝔽3) | φ: S4/A4 → C2 ⊆ Aut C3×C6 | 216 | | (C3xC6).15S4 | 432,256 |
(C3×C6).16S4 = C62.10Dic3 | φ: S4/A4 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).16S4 | 432,259 |
(C3×C6).17S4 = C6×C3.S4 | φ: S4/A4 → C2 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).17S4 | 432,534 |
(C3×C6).18S4 = C2×C32.3S4 | φ: S4/A4 → C2 ⊆ Aut C3×C6 | 54 | | (C3xC6).18S4 | 432,537 |
(C3×C6).19S4 = C3×C6.5S4 | φ: S4/A4 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).19S4 | 432,616 |
(C3×C6).20S4 = C3×C6.6S4 | φ: S4/A4 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).20S4 | 432,617 |
(C3×C6).21S4 = C3×C6.7S4 | φ: S4/A4 → C2 ⊆ Aut C3×C6 | 36 | 6 | (C3xC6).21S4 | 432,618 |
(C3×C6).22S4 = C32⋊4CSU2(𝔽3) | φ: S4/A4 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).22S4 | 432,619 |
(C3×C6).23S4 = C32⋊5GL2(𝔽3) | φ: S4/A4 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).23S4 | 432,620 |
(C3×C6).24S4 = C62⋊10Dic3 | φ: S4/A4 → C2 ⊆ Aut C3×C6 | 108 | | (C3xC6).24S4 | 432,621 |
(C3×C6).25S4 = C32×CSU2(𝔽3) | central extension (φ=1) | 144 | | (C3xC6).25S4 | 432,613 |
(C3×C6).26S4 = C32×GL2(𝔽3) | central extension (φ=1) | 72 | | (C3xC6).26S4 | 432,614 |
(C3×C6).27S4 = C32×A4⋊C4 | central extension (φ=1) | 108 | | (C3xC6).27S4 | 432,615 |