direct product, non-abelian, soluble
Aliases: C3×Q8.D9, C32.2CSU2(𝔽3), Q8.(C3×D9), C6.2(C3×S4), Q8⋊C9.3C6, (C3×C6).11S4, (C3×Q8).4D9, C6.8(C3.S4), (Q8×C32).6S3, C3.2(C3×CSU2(𝔽3)), C2.2(C3×C3.S4), (C3×Q8⋊C9).1C2, (C3×Q8).2(C3×S3), SmallGroup(432,244)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — Q8 — Q8⋊C9 — C3×Q8.D9 |
C1 — C2 — Q8 — C3×Q8 — Q8⋊C9 — C3×Q8⋊C9 — C3×Q8.D9 |
Q8⋊C9 — C3×Q8.D9 |
Generators and relations for C3×Q8.D9
G = < a,b,c,d,e | a3=b4=d9=1, c2=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, dbd-1=c, ebe-1=b-1c, dcd-1=bc, ece-1=b2c, ede-1=d-1 >
(1 7 4)(2 8 5)(3 9 6)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)(55 58 61)(56 59 62)(57 60 63)(64 67 70)(65 68 71)(66 69 72)(73 79 76)(74 80 77)(75 81 78)(82 88 85)(83 89 86)(84 90 87)(91 97 94)(92 98 95)(93 99 96)(100 106 103)(101 107 104)(102 108 105)(109 115 112)(110 116 113)(111 117 114)(118 124 121)(119 125 122)(120 126 123)(127 133 130)(128 134 131)(129 135 132)(136 139 142)(137 140 143)(138 141 144)
(1 89 101 73)(2 93 102 120)(3 134 103 112)(4 83 104 76)(5 96 105 123)(6 128 106 115)(7 86 107 79)(8 99 108 126)(9 131 100 109)(10 62 32 69)(11 24 33 51)(12 140 34 43)(13 56 35 72)(14 27 36 54)(15 143 28 37)(16 59 29 66)(17 21 30 48)(18 137 31 40)(19 58 46 65)(20 38 47 144)(22 61 49 68)(23 41 50 138)(25 55 52 71)(26 44 53 141)(39 60 136 67)(42 63 139 70)(45 57 142 64)(74 111 90 133)(75 94 82 121)(77 114 84 127)(78 97 85 124)(80 117 87 130)(81 91 88 118)(92 110 119 132)(95 113 122 135)(98 116 125 129)
(1 92 101 119)(2 133 102 111)(3 82 103 75)(4 95 104 122)(5 127 105 114)(6 85 106 78)(7 98 107 125)(8 130 108 117)(9 88 100 81)(10 23 32 50)(11 139 33 42)(12 55 34 71)(13 26 35 53)(14 142 36 45)(15 58 28 65)(16 20 29 47)(17 136 30 39)(18 61 31 68)(19 37 46 143)(21 60 48 67)(22 40 49 137)(24 63 51 70)(25 43 52 140)(27 57 54 64)(38 59 144 66)(41 62 138 69)(44 56 141 72)(73 110 89 132)(74 93 90 120)(76 113 83 135)(77 96 84 123)(79 116 86 129)(80 99 87 126)(91 109 118 131)(94 112 121 134)(97 115 124 128)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 43 101 140)(2 42 102 139)(3 41 103 138)(4 40 104 137)(5 39 105 136)(6 38 106 144)(7 37 107 143)(8 45 108 142)(9 44 100 141)(10 134 32 112)(11 133 33 111)(12 132 34 110)(13 131 35 109)(14 130 36 117)(15 129 28 116)(16 128 29 115)(17 127 30 114)(18 135 31 113)(19 125 46 98)(20 124 47 97)(21 123 48 96)(22 122 49 95)(23 121 50 94)(24 120 51 93)(25 119 52 92)(26 118 53 91)(27 126 54 99)(55 89 71 73)(56 88 72 81)(57 87 64 80)(58 86 65 79)(59 85 66 78)(60 84 67 77)(61 83 68 76)(62 82 69 75)(63 90 70 74)
G:=sub<Sym(144)| (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,79,76)(74,80,77)(75,81,78)(82,88,85)(83,89,86)(84,90,87)(91,97,94)(92,98,95)(93,99,96)(100,106,103)(101,107,104)(102,108,105)(109,115,112)(110,116,113)(111,117,114)(118,124,121)(119,125,122)(120,126,123)(127,133,130)(128,134,131)(129,135,132)(136,139,142)(137,140,143)(138,141,144), (1,89,101,73)(2,93,102,120)(3,134,103,112)(4,83,104,76)(5,96,105,123)(6,128,106,115)(7,86,107,79)(8,99,108,126)(9,131,100,109)(10,62,32,69)(11,24,33,51)(12,140,34,43)(13,56,35,72)(14,27,36,54)(15,143,28,37)(16,59,29,66)(17,21,30,48)(18,137,31,40)(19,58,46,65)(20,38,47,144)(22,61,49,68)(23,41,50,138)(25,55,52,71)(26,44,53,141)(39,60,136,67)(42,63,139,70)(45,57,142,64)(74,111,90,133)(75,94,82,121)(77,114,84,127)(78,97,85,124)(80,117,87,130)(81,91,88,118)(92,110,119,132)(95,113,122,135)(98,116,125,129), (1,92,101,119)(2,133,102,111)(3,82,103,75)(4,95,104,122)(5,127,105,114)(6,85,106,78)(7,98,107,125)(8,130,108,117)(9,88,100,81)(10,23,32,50)(11,139,33,42)(12,55,34,71)(13,26,35,53)(14,142,36,45)(15,58,28,65)(16,20,29,47)(17,136,30,39)(18,61,31,68)(19,37,46,143)(21,60,48,67)(22,40,49,137)(24,63,51,70)(25,43,52,140)(27,57,54,64)(38,59,144,66)(41,62,138,69)(44,56,141,72)(73,110,89,132)(74,93,90,120)(76,113,83,135)(77,96,84,123)(79,116,86,129)(80,99,87,126)(91,109,118,131)(94,112,121,134)(97,115,124,128), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,43,101,140)(2,42,102,139)(3,41,103,138)(4,40,104,137)(5,39,105,136)(6,38,106,144)(7,37,107,143)(8,45,108,142)(9,44,100,141)(10,134,32,112)(11,133,33,111)(12,132,34,110)(13,131,35,109)(14,130,36,117)(15,129,28,116)(16,128,29,115)(17,127,30,114)(18,135,31,113)(19,125,46,98)(20,124,47,97)(21,123,48,96)(22,122,49,95)(23,121,50,94)(24,120,51,93)(25,119,52,92)(26,118,53,91)(27,126,54,99)(55,89,71,73)(56,88,72,81)(57,87,64,80)(58,86,65,79)(59,85,66,78)(60,84,67,77)(61,83,68,76)(62,82,69,75)(63,90,70,74)>;
G:=Group( (1,7,4)(2,8,5)(3,9,6)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,79,76)(74,80,77)(75,81,78)(82,88,85)(83,89,86)(84,90,87)(91,97,94)(92,98,95)(93,99,96)(100,106,103)(101,107,104)(102,108,105)(109,115,112)(110,116,113)(111,117,114)(118,124,121)(119,125,122)(120,126,123)(127,133,130)(128,134,131)(129,135,132)(136,139,142)(137,140,143)(138,141,144), (1,89,101,73)(2,93,102,120)(3,134,103,112)(4,83,104,76)(5,96,105,123)(6,128,106,115)(7,86,107,79)(8,99,108,126)(9,131,100,109)(10,62,32,69)(11,24,33,51)(12,140,34,43)(13,56,35,72)(14,27,36,54)(15,143,28,37)(16,59,29,66)(17,21,30,48)(18,137,31,40)(19,58,46,65)(20,38,47,144)(22,61,49,68)(23,41,50,138)(25,55,52,71)(26,44,53,141)(39,60,136,67)(42,63,139,70)(45,57,142,64)(74,111,90,133)(75,94,82,121)(77,114,84,127)(78,97,85,124)(80,117,87,130)(81,91,88,118)(92,110,119,132)(95,113,122,135)(98,116,125,129), (1,92,101,119)(2,133,102,111)(3,82,103,75)(4,95,104,122)(5,127,105,114)(6,85,106,78)(7,98,107,125)(8,130,108,117)(9,88,100,81)(10,23,32,50)(11,139,33,42)(12,55,34,71)(13,26,35,53)(14,142,36,45)(15,58,28,65)(16,20,29,47)(17,136,30,39)(18,61,31,68)(19,37,46,143)(21,60,48,67)(22,40,49,137)(24,63,51,70)(25,43,52,140)(27,57,54,64)(38,59,144,66)(41,62,138,69)(44,56,141,72)(73,110,89,132)(74,93,90,120)(76,113,83,135)(77,96,84,123)(79,116,86,129)(80,99,87,126)(91,109,118,131)(94,112,121,134)(97,115,124,128), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,43,101,140)(2,42,102,139)(3,41,103,138)(4,40,104,137)(5,39,105,136)(6,38,106,144)(7,37,107,143)(8,45,108,142)(9,44,100,141)(10,134,32,112)(11,133,33,111)(12,132,34,110)(13,131,35,109)(14,130,36,117)(15,129,28,116)(16,128,29,115)(17,127,30,114)(18,135,31,113)(19,125,46,98)(20,124,47,97)(21,123,48,96)(22,122,49,95)(23,121,50,94)(24,120,51,93)(25,119,52,92)(26,118,53,91)(27,126,54,99)(55,89,71,73)(56,88,72,81)(57,87,64,80)(58,86,65,79)(59,85,66,78)(60,84,67,77)(61,83,68,76)(62,82,69,75)(63,90,70,74) );
G=PermutationGroup([[(1,7,4),(2,8,5),(3,9,6),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54),(55,58,61),(56,59,62),(57,60,63),(64,67,70),(65,68,71),(66,69,72),(73,79,76),(74,80,77),(75,81,78),(82,88,85),(83,89,86),(84,90,87),(91,97,94),(92,98,95),(93,99,96),(100,106,103),(101,107,104),(102,108,105),(109,115,112),(110,116,113),(111,117,114),(118,124,121),(119,125,122),(120,126,123),(127,133,130),(128,134,131),(129,135,132),(136,139,142),(137,140,143),(138,141,144)], [(1,89,101,73),(2,93,102,120),(3,134,103,112),(4,83,104,76),(5,96,105,123),(6,128,106,115),(7,86,107,79),(8,99,108,126),(9,131,100,109),(10,62,32,69),(11,24,33,51),(12,140,34,43),(13,56,35,72),(14,27,36,54),(15,143,28,37),(16,59,29,66),(17,21,30,48),(18,137,31,40),(19,58,46,65),(20,38,47,144),(22,61,49,68),(23,41,50,138),(25,55,52,71),(26,44,53,141),(39,60,136,67),(42,63,139,70),(45,57,142,64),(74,111,90,133),(75,94,82,121),(77,114,84,127),(78,97,85,124),(80,117,87,130),(81,91,88,118),(92,110,119,132),(95,113,122,135),(98,116,125,129)], [(1,92,101,119),(2,133,102,111),(3,82,103,75),(4,95,104,122),(5,127,105,114),(6,85,106,78),(7,98,107,125),(8,130,108,117),(9,88,100,81),(10,23,32,50),(11,139,33,42),(12,55,34,71),(13,26,35,53),(14,142,36,45),(15,58,28,65),(16,20,29,47),(17,136,30,39),(18,61,31,68),(19,37,46,143),(21,60,48,67),(22,40,49,137),(24,63,51,70),(25,43,52,140),(27,57,54,64),(38,59,144,66),(41,62,138,69),(44,56,141,72),(73,110,89,132),(74,93,90,120),(76,113,83,135),(77,96,84,123),(79,116,86,129),(80,99,87,126),(91,109,118,131),(94,112,121,134),(97,115,124,128)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,43,101,140),(2,42,102,139),(3,41,103,138),(4,40,104,137),(5,39,105,136),(6,38,106,144),(7,37,107,143),(8,45,108,142),(9,44,100,141),(10,134,32,112),(11,133,33,111),(12,132,34,110),(13,131,35,109),(14,130,36,117),(15,129,28,116),(16,128,29,115),(17,127,30,114),(18,135,31,113),(19,125,46,98),(20,124,47,97),(21,123,48,96),(22,122,49,95),(23,121,50,94),(24,120,51,93),(25,119,52,92),(26,118,53,91),(27,126,54,99),(55,89,71,73),(56,88,72,81),(57,87,64,80),(58,86,65,79),(59,85,66,78),(60,84,67,77),(61,83,68,76),(62,82,69,75),(63,90,70,74)]])
45 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 9A | ··· | 9I | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 18A | ··· | 18I | 24A | 24B | 24C | 24D |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 9 | ··· | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 18 | ··· | 18 | 24 | 24 | 24 | 24 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 6 | 36 | 1 | 1 | 2 | 2 | 2 | 18 | 18 | 8 | ··· | 8 | 6 | 6 | 12 | 12 | 12 | 36 | 36 | 8 | ··· | 8 | 18 | 18 | 18 | 18 |
45 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 |
type | + | + | + | + | - | + | - | - | + | |||||||||
image | C1 | C2 | C3 | C6 | S3 | D9 | C3×S3 | CSU2(𝔽3) | C3×D9 | C3×CSU2(𝔽3) | S4 | C3×S4 | CSU2(𝔽3) | Q8.D9 | C3×CSU2(𝔽3) | C3×Q8.D9 | C3.S4 | C3×C3.S4 |
kernel | C3×Q8.D9 | C3×Q8⋊C9 | Q8.D9 | Q8⋊C9 | Q8×C32 | C3×Q8 | C3×Q8 | C32 | Q8 | C3 | C3×C6 | C6 | C32 | C3 | C3 | C1 | C6 | C2 |
# reps | 1 | 1 | 2 | 2 | 1 | 3 | 2 | 2 | 6 | 4 | 2 | 4 | 1 | 3 | 2 | 6 | 1 | 2 |
Matrix representation of C3×Q8.D9 ►in GL4(𝔽73) generated by
8 | 0 | 0 | 0 |
0 | 8 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 2 |
0 | 0 | 72 | 72 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 11 | 71 |
0 | 0 | 61 | 62 |
37 | 0 | 0 | 0 |
38 | 2 | 0 | 0 |
0 | 0 | 60 | 61 |
0 | 0 | 7 | 12 |
4 | 4 | 0 | 0 |
51 | 69 | 0 | 0 |
0 | 0 | 46 | 60 |
0 | 0 | 0 | 27 |
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,1,72,0,0,2,72],[1,0,0,0,0,1,0,0,0,0,11,61,0,0,71,62],[37,38,0,0,0,2,0,0,0,0,60,7,0,0,61,12],[4,51,0,0,4,69,0,0,0,0,46,0,0,0,60,27] >;
C3×Q8.D9 in GAP, Magma, Sage, TeX
C_3\times Q_8.D_9
% in TeX
G:=Group("C3xQ8.D9");
// GroupNames label
G:=SmallGroup(432,244);
// by ID
G=gap.SmallGroup(432,244);
# by ID
G:=PCGroup([7,-2,-3,-3,-3,-2,2,-2,1512,632,142,1011,3784,1908,172,2273,1153,285,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^4=d^9=1,c^2=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,d*b*d^-1=c,e*b*e^-1=b^-1*c,d*c*d^-1=b*c,e*c*e^-1=b^2*c,e*d*e^-1=d^-1>;
// generators/relations
Export