Extensions 1→N→G→Q→1 with N=C3 and Q=C3×CSU2(𝔽3)

Direct product G=N×Q with N=C3 and Q=C3×CSU2(𝔽3)
dρLabelID
C32×CSU2(𝔽3)144C3^2xCSU(2,3)432,613

Semidirect products G=N:Q with N=C3 and Q=C3×CSU2(𝔽3)
extensionφ:Q→Aut NdρLabelID
C3⋊(C3×CSU2(𝔽3)) = C3×C6.5S4φ: C3×CSU2(𝔽3)/C3×SL2(𝔽3)C2 ⊆ Aut C3484C3:(C3xCSU(2,3))432,616

Non-split extensions G=N.Q with N=C3 and Q=C3×CSU2(𝔽3)
extensionφ:Q→Aut NdρLabelID
C3.1(C3×CSU2(𝔽3)) = C32.CSU2(𝔽3)φ: C3×CSU2(𝔽3)/C3×SL2(𝔽3)C2 ⊆ Aut C314412-C3.1(C3xCSU(2,3))432,243
C3.2(C3×CSU2(𝔽3)) = C3×Q8.D9φ: C3×CSU2(𝔽3)/C3×SL2(𝔽3)C2 ⊆ Aut C31444C3.2(C3xCSU(2,3))432,244
C3.3(C3×CSU2(𝔽3)) = C32⋊CSU2(𝔽3)φ: C3×CSU2(𝔽3)/C3×SL2(𝔽3)C2 ⊆ Aut C314412-C3.3(C3xCSU(2,3))432,247
C3.4(C3×CSU2(𝔽3)) = C9×CSU2(𝔽3)central extension (φ=1)1442C3.4(C3xCSU(2,3))432,240

׿
×
𝔽