Extensions 1→N→G→Q→1 with N=C2×C4 and Q=D27

Direct product G=N×Q with N=C2×C4 and Q=D27
dρLabelID
C2×C4×D27216C2xC4xD27432,44

Semidirect products G=N:Q with N=C2×C4 and Q=D27
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1D27 = D54⋊C4φ: D27/C27C2 ⊆ Aut C2×C4216(C2xC4):1D27432,14
(C2×C4)⋊2D27 = C2×D108φ: D27/C27C2 ⊆ Aut C2×C4216(C2xC4):2D27432,45
(C2×C4)⋊3D27 = D1085C2φ: D27/C27C2 ⊆ Aut C2×C42162(C2xC4):3D27432,46

Non-split extensions G=N.Q with N=C2×C4 and Q=D27
extensionφ:Q→Aut NdρLabelID
(C2×C4).1D27 = Dic27⋊C4φ: D27/C27C2 ⊆ Aut C2×C4432(C2xC4).1D27432,12
(C2×C4).2D27 = C4.Dic27φ: D27/C27C2 ⊆ Aut C2×C42162(C2xC4).2D27432,10
(C2×C4).3D27 = C4⋊Dic27φ: D27/C27C2 ⊆ Aut C2×C4432(C2xC4).3D27432,13
(C2×C4).4D27 = C2×Dic54φ: D27/C27C2 ⊆ Aut C2×C4432(C2xC4).4D27432,43
(C2×C4).5D27 = C2×C27⋊C8central extension (φ=1)432(C2xC4).5D27432,9
(C2×C4).6D27 = C4×Dic27central extension (φ=1)432(C2xC4).6D27432,11

׿
×
𝔽