p-group, cyclic, abelian, monomial
Aliases: C27, also denoted Z27, SmallGroup(27,1)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C27 |
C1 — C27 |
C1 — C27 |
Generators and relations for C27
G = < a | a27=1 >
Character table of C27
class | 1 | 3A | 3B | 9A | 9B | 9C | 9D | 9E | 9F | 27A | 27B | 27C | 27D | 27E | 27F | 27G | 27H | 27I | 27J | 27K | 27L | 27M | 27N | 27O | 27P | 27Q | 27R | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ32 | ζ3 | ζ273 | ζ276 | ζ2712 | ζ2721 | ζ2715 | ζ2724 | ζ2726 | ζ272 | ζ2710 | ζ2719 | ζ2711 | ζ2720 | ζ274 | ζ277 | ζ275 | ζ278 | ζ2713 | ζ2722 | ζ2716 | ζ2725 | ζ2714 | ζ2723 | ζ2717 | ζ27 | linear of order 27 faithful |
ρ3 | 1 | ζ3 | ζ32 | ζ276 | ζ2712 | ζ2724 | ζ2715 | ζ273 | ζ2721 | ζ2725 | ζ274 | ζ2720 | ζ2711 | ζ2722 | ζ2713 | ζ278 | ζ2714 | ζ2710 | ζ2716 | ζ2726 | ζ2717 | ζ275 | ζ2723 | ζ27 | ζ2719 | ζ277 | ζ272 | linear of order 27 faithful |
ρ4 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ98 | ζ92 | ζ9 | ζ9 | ζ92 | ζ92 | ζ94 | ζ97 | ζ95 | ζ98 | ζ94 | ζ94 | ζ97 | ζ97 | ζ95 | ζ95 | ζ98 | ζ9 | linear of order 9 |
ρ5 | 1 | ζ32 | ζ3 | ζ2712 | ζ2724 | ζ2721 | ζ273 | ζ276 | ζ2715 | ζ2723 | ζ278 | ζ2713 | ζ2722 | ζ2717 | ζ2726 | ζ2716 | ζ27 | ζ2720 | ζ275 | ζ2725 | ζ277 | ζ2710 | ζ2719 | ζ272 | ζ2711 | ζ2714 | ζ274 | linear of order 27 faithful |
ρ6 | 1 | ζ3 | ζ32 | ζ2715 | ζ273 | ζ276 | ζ2724 | ζ2721 | ζ2712 | ζ2722 | ζ2710 | ζ2723 | ζ2714 | ζ27 | ζ2719 | ζ2720 | ζ278 | ζ2725 | ζ2713 | ζ2711 | ζ272 | ζ2726 | ζ2717 | ζ2716 | ζ277 | ζ274 | ζ275 | linear of order 27 faithful |
ρ7 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ97 | ζ94 | ζ92 | ζ92 | ζ94 | ζ94 | ζ98 | ζ95 | ζ9 | ζ97 | ζ98 | ζ98 | ζ95 | ζ95 | ζ9 | ζ9 | ζ97 | ζ92 | linear of order 9 |
ρ8 | 1 | ζ32 | ζ3 | ζ2721 | ζ2715 | ζ273 | ζ2712 | ζ2724 | ζ276 | ζ2720 | ζ2714 | ζ2716 | ζ2725 | ζ2723 | ζ275 | ζ27 | ζ2722 | ζ278 | ζ272 | ζ2710 | ζ2719 | ζ274 | ζ2713 | ζ2717 | ζ2726 | ζ2711 | ζ277 | linear of order 27 faithful |
ρ9 | 1 | ζ3 | ζ32 | ζ2724 | ζ2721 | ζ2715 | ζ276 | ζ2712 | ζ273 | ζ2719 | ζ2716 | ζ2726 | ζ2717 | ζ277 | ζ2725 | ζ275 | ζ272 | ζ2713 | ζ2710 | ζ2723 | ζ2714 | ζ2720 | ζ2711 | ζ274 | ζ2722 | ζ27 | ζ278 | linear of order 27 faithful |
ρ10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ11 | 1 | ζ32 | ζ3 | ζ273 | ζ276 | ζ2712 | ζ2721 | ζ2715 | ζ2724 | ζ2717 | ζ2720 | ζ2719 | ζ27 | ζ272 | ζ2711 | ζ2713 | ζ2716 | ζ2723 | ζ2726 | ζ2722 | ζ274 | ζ2725 | ζ277 | ζ275 | ζ2714 | ζ278 | ζ2710 | linear of order 27 faithful |
ρ12 | 1 | ζ3 | ζ32 | ζ276 | ζ2712 | ζ2724 | ζ2715 | ζ273 | ζ2721 | ζ2716 | ζ2722 | ζ272 | ζ2720 | ζ2713 | ζ274 | ζ2717 | ζ2723 | ζ27 | ζ277 | ζ278 | ζ2726 | ζ2714 | ζ275 | ζ2719 | ζ2710 | ζ2725 | ζ2711 | linear of order 27 faithful |
ρ13 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ95 | ζ98 | ζ94 | ζ94 | ζ98 | ζ98 | ζ97 | ζ9 | ζ92 | ζ95 | ζ97 | ζ97 | ζ9 | ζ9 | ζ92 | ζ92 | ζ95 | ζ94 | linear of order 9 |
ρ14 | 1 | ζ32 | ζ3 | ζ2712 | ζ2724 | ζ2721 | ζ273 | ζ276 | ζ2715 | ζ2714 | ζ2726 | ζ2722 | ζ274 | ζ278 | ζ2717 | ζ2725 | ζ2710 | ζ2711 | ζ2723 | ζ277 | ζ2716 | ζ2719 | ζ27 | ζ2720 | ζ272 | ζ275 | ζ2713 | linear of order 27 faithful |
ρ15 | 1 | ζ3 | ζ32 | ζ2715 | ζ273 | ζ276 | ζ2724 | ζ2721 | ζ2712 | ζ2713 | ζ27 | ζ275 | ζ2723 | ζ2719 | ζ2710 | ζ272 | ζ2717 | ζ2716 | ζ274 | ζ2720 | ζ2711 | ζ278 | ζ2726 | ζ277 | ζ2725 | ζ2722 | ζ2714 | linear of order 27 faithful |
ρ16 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ94 | ζ9 | ζ95 | ζ95 | ζ9 | ζ9 | ζ92 | ζ98 | ζ97 | ζ94 | ζ92 | ζ92 | ζ98 | ζ98 | ζ97 | ζ97 | ζ94 | ζ95 | linear of order 9 |
ρ17 | 1 | ζ32 | ζ3 | ζ2721 | ζ2715 | ζ273 | ζ2712 | ζ2724 | ζ276 | ζ2711 | ζ275 | ζ2725 | ζ277 | ζ2714 | ζ2723 | ζ2710 | ζ274 | ζ2726 | ζ2720 | ζ2719 | ζ27 | ζ2713 | ζ2722 | ζ278 | ζ2717 | ζ272 | ζ2716 | linear of order 27 faithful |
ρ18 | 1 | ζ3 | ζ32 | ζ2724 | ζ2721 | ζ2715 | ζ276 | ζ2712 | ζ273 | ζ2710 | ζ277 | ζ278 | ζ2726 | ζ2725 | ζ2716 | ζ2714 | ζ2711 | ζ274 | ζ27 | ζ275 | ζ2723 | ζ272 | ζ2720 | ζ2722 | ζ2713 | ζ2719 | ζ2717 | linear of order 27 faithful |
ρ19 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ20 | 1 | ζ32 | ζ3 | ζ273 | ζ276 | ζ2712 | ζ2721 | ζ2715 | ζ2724 | ζ278 | ζ2711 | ζ27 | ζ2710 | ζ2720 | ζ272 | ζ2722 | ζ2725 | ζ2714 | ζ2717 | ζ274 | ζ2713 | ζ277 | ζ2716 | ζ2723 | ζ275 | ζ2726 | ζ2719 | linear of order 27 faithful |
ρ21 | 1 | ζ3 | ζ32 | ζ276 | ζ2712 | ζ2724 | ζ2715 | ζ273 | ζ2721 | ζ277 | ζ2713 | ζ2711 | ζ272 | ζ274 | ζ2722 | ζ2726 | ζ275 | ζ2719 | ζ2725 | ζ2717 | ζ278 | ζ2723 | ζ2714 | ζ2710 | ζ27 | ζ2716 | ζ2720 | linear of order 27 faithful |
ρ22 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ92 | ζ95 | ζ97 | ζ97 | ζ95 | ζ95 | ζ9 | ζ94 | ζ98 | ζ92 | ζ9 | ζ9 | ζ94 | ζ94 | ζ98 | ζ98 | ζ92 | ζ97 | linear of order 9 |
ρ23 | 1 | ζ32 | ζ3 | ζ2712 | ζ2724 | ζ2721 | ζ273 | ζ276 | ζ2715 | ζ275 | ζ2717 | ζ274 | ζ2713 | ζ2726 | ζ278 | ζ277 | ζ2719 | ζ272 | ζ2714 | ζ2716 | ζ2725 | ζ27 | ζ2710 | ζ2711 | ζ2720 | ζ2723 | ζ2722 | linear of order 27 faithful |
ρ24 | 1 | ζ3 | ζ32 | ζ2715 | ζ273 | ζ276 | ζ2724 | ζ2721 | ζ2712 | ζ274 | ζ2719 | ζ2714 | ζ275 | ζ2710 | ζ27 | ζ2711 | ζ2726 | ζ277 | ζ2722 | ζ272 | ζ2720 | ζ2717 | ζ278 | ζ2725 | ζ2716 | ζ2713 | ζ2723 | linear of order 27 faithful |
ρ25 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ9 | ζ97 | ζ98 | ζ98 | ζ97 | ζ97 | ζ95 | ζ92 | ζ94 | ζ9 | ζ95 | ζ95 | ζ92 | ζ92 | ζ94 | ζ94 | ζ9 | ζ98 | linear of order 9 |
ρ26 | 1 | ζ32 | ζ3 | ζ2721 | ζ2715 | ζ273 | ζ2712 | ζ2724 | ζ276 | ζ272 | ζ2723 | ζ277 | ζ2716 | ζ275 | ζ2714 | ζ2719 | ζ2713 | ζ2717 | ζ2711 | ζ27 | ζ2710 | ζ2722 | ζ274 | ζ2726 | ζ278 | ζ2720 | ζ2725 | linear of order 27 faithful |
ρ27 | 1 | ζ3 | ζ32 | ζ2724 | ζ2721 | ζ2715 | ζ276 | ζ2712 | ζ273 | ζ27 | ζ2725 | ζ2717 | ζ278 | ζ2716 | ζ277 | ζ2723 | ζ2720 | ζ2722 | ζ2719 | ζ2714 | ζ275 | ζ2711 | ζ272 | ζ2713 | ζ274 | ζ2710 | ζ2726 | linear of order 27 faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)
G:=sub<Sym(27)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)]])
G:=TransitiveGroup(27,1);
C27 is a maximal subgroup of
D27 C81 C27⋊C3 C9.A4 C7⋊C27 C13⋊C27
C27 is a maximal quotient of C81 C9.A4 C7⋊C27 C13⋊C27
Matrix representation of C27 ►in GL1(𝔽109) generated by
7 |
G:=sub<GL(1,GF(109))| [7] >;
C27 in GAP, Magma, Sage, TeX
C_{27}
% in TeX
G:=Group("C27");
// GroupNames label
G:=SmallGroup(27,1);
// by ID
G=gap.SmallGroup(27,1);
# by ID
G:=PCGroup([3,-3,-3,-3,9,22]);
// Polycyclic
G:=Group<a|a^27=1>;
// generators/relations
Export
Subgroup lattice of C27 in TeX
Character table of C27 in TeX