extension | φ:Q→Aut N | d | ρ | Label | ID |
C12.1Dic9 = C4.Dic27 | φ: Dic9/C18 → C2 ⊆ Aut C12 | 216 | 2 | C12.1Dic9 | 432,10 |
C12.2Dic9 = C4⋊Dic27 | φ: Dic9/C18 → C2 ⊆ Aut C12 | 432 | | C12.2Dic9 | 432,13 |
C12.3Dic9 = C36.69D6 | φ: Dic9/C18 → C2 ⊆ Aut C12 | 216 | | C12.3Dic9 | 432,179 |
C12.4Dic9 = C27⋊C16 | φ: Dic9/C18 → C2 ⊆ Aut C12 | 432 | 2 | C12.4Dic9 | 432,1 |
C12.5Dic9 = C2×C27⋊C8 | φ: Dic9/C18 → C2 ⊆ Aut C12 | 432 | | C12.5Dic9 | 432,9 |
C12.6Dic9 = C4×Dic27 | φ: Dic9/C18 → C2 ⊆ Aut C12 | 432 | | C12.6Dic9 | 432,11 |
C12.7Dic9 = C72.S3 | φ: Dic9/C18 → C2 ⊆ Aut C12 | 432 | | C12.7Dic9 | 432,32 |
C12.8Dic9 = C2×C36.S3 | φ: Dic9/C18 → C2 ⊆ Aut C12 | 432 | | C12.8Dic9 | 432,178 |
C12.9Dic9 = C3×C4.Dic9 | φ: Dic9/C18 → C2 ⊆ Aut C12 | 72 | 2 | C12.9Dic9 | 432,125 |
C12.10Dic9 = C3×C9⋊C16 | central extension (φ=1) | 144 | 2 | C12.10Dic9 | 432,28 |
C12.11Dic9 = C6×C9⋊C8 | central extension (φ=1) | 144 | | C12.11Dic9 | 432,124 |