Extensions 1→N→G→Q→1 with N=C12 and Q=Dic9

Direct product G=N×Q with N=C12 and Q=Dic9
dρLabelID
C12×Dic9144C12xDic9432,128

Semidirect products G=N:Q with N=C12 and Q=Dic9
extensionφ:Q→Aut NdρLabelID
C121Dic9 = C36⋊Dic3φ: Dic9/C18C2 ⊆ Aut C12432C12:1Dic9432,182
C122Dic9 = C4×C9⋊Dic3φ: Dic9/C18C2 ⊆ Aut C12432C12:2Dic9432,180
C123Dic9 = C3×C4⋊Dic9φ: Dic9/C18C2 ⊆ Aut C12144C12:3Dic9432,130

Non-split extensions G=N.Q with N=C12 and Q=Dic9
extensionφ:Q→Aut NdρLabelID
C12.1Dic9 = C4.Dic27φ: Dic9/C18C2 ⊆ Aut C122162C12.1Dic9432,10
C12.2Dic9 = C4⋊Dic27φ: Dic9/C18C2 ⊆ Aut C12432C12.2Dic9432,13
C12.3Dic9 = C36.69D6φ: Dic9/C18C2 ⊆ Aut C12216C12.3Dic9432,179
C12.4Dic9 = C27⋊C16φ: Dic9/C18C2 ⊆ Aut C124322C12.4Dic9432,1
C12.5Dic9 = C2×C27⋊C8φ: Dic9/C18C2 ⊆ Aut C12432C12.5Dic9432,9
C12.6Dic9 = C4×Dic27φ: Dic9/C18C2 ⊆ Aut C12432C12.6Dic9432,11
C12.7Dic9 = C72.S3φ: Dic9/C18C2 ⊆ Aut C12432C12.7Dic9432,32
C12.8Dic9 = C2×C36.S3φ: Dic9/C18C2 ⊆ Aut C12432C12.8Dic9432,178
C12.9Dic9 = C3×C4.Dic9φ: Dic9/C18C2 ⊆ Aut C12722C12.9Dic9432,125
C12.10Dic9 = C3×C9⋊C16central extension (φ=1)1442C12.10Dic9432,28
C12.11Dic9 = C6×C9⋊C8central extension (φ=1)144C12.11Dic9432,124

׿
×
𝔽