Copied to
clipboard

G = C3×C4.Dic9order 432 = 24·33

Direct product of C3 and C4.Dic9

direct product, metacyclic, supersoluble, monomial

Aliases: C3×C4.Dic9, C36.7C12, C12.78D18, C12.9Dic9, C62.16Dic3, C9⋊C812C6, C4.(C3×Dic9), (C3×C36).3C4, (C6×C18).5C4, C4.15(C6×D9), (C3×C9)⋊8M4(2), C12.91(S3×C6), C36.38(C2×C6), (C6×C36).11C2, (C2×C36).18C6, (C6×C12).38S3, (C2×C12).18D9, C95(C3×M4(2)), (C2×C6).2Dic9, C6.7(C6×Dic3), C2.3(C6×Dic9), (C2×C18).10C12, C18.21(C2×C12), C22.(C3×Dic9), (C3×C12).215D6, C6.18(C2×Dic9), C12.1(C3×Dic3), (C3×C36).68C22, (C3×C12).18Dic3, C32.3(C4.Dic3), (C3×C9⋊C8)⋊12C2, (C2×C4).2(C3×D9), (C2×C12).22(C3×S3), (C3×C18).33(C2×C4), C3.1(C3×C4.Dic3), (C2×C6).13(C3×Dic3), (C3×C6).55(C2×Dic3), SmallGroup(432,125)

Series: Derived Chief Lower central Upper central

C1C18 — C3×C4.Dic9
C1C3C9C18C36C3×C36C3×C9⋊C8 — C3×C4.Dic9
C9C18 — C3×C4.Dic9
C1C12C2×C12

Generators and relations for C3×C4.Dic9
 G = < a,b,c,d | a3=b4=1, c18=b2, d2=c9, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c17 >

Subgroups: 158 in 76 conjugacy classes, 42 normal (38 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C8, C2×C4, C9, C9, C32, C12, C12, C2×C6, C2×C6, M4(2), C18, C18, C3×C6, C3×C6, C3⋊C8, C24, C2×C12, C2×C12, C3×C9, C36, C36, C2×C18, C2×C18, C3×C12, C62, C4.Dic3, C3×M4(2), C3×C18, C3×C18, C9⋊C8, C2×C36, C2×C36, C3×C3⋊C8, C6×C12, C3×C36, C6×C18, C4.Dic9, C3×C4.Dic3, C3×C9⋊C8, C6×C36, C3×C4.Dic9
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, Dic3, C12, D6, C2×C6, M4(2), D9, C3×S3, C2×Dic3, C2×C12, Dic9, D18, C3×Dic3, S3×C6, C4.Dic3, C3×M4(2), C3×D9, C2×Dic9, C6×Dic3, C3×Dic9, C6×D9, C4.Dic9, C3×C4.Dic3, C6×Dic9, C3×C4.Dic9

Smallest permutation representation of C3×C4.Dic9
On 72 points
Generators in S72
(1 25 13)(2 26 14)(3 27 15)(4 28 16)(5 29 17)(6 30 18)(7 31 19)(8 32 20)(9 33 21)(10 34 22)(11 35 23)(12 36 24)(37 49 61)(38 50 62)(39 51 63)(40 52 64)(41 53 65)(42 54 66)(43 55 67)(44 56 68)(45 57 69)(46 58 70)(47 59 71)(48 60 72)
(1 10 19 28)(2 11 20 29)(3 12 21 30)(4 13 22 31)(5 14 23 32)(6 15 24 33)(7 16 25 34)(8 17 26 35)(9 18 27 36)(37 64 55 46)(38 65 56 47)(39 66 57 48)(40 67 58 49)(41 68 59 50)(42 69 60 51)(43 70 61 52)(44 71 62 53)(45 72 63 54)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 55 10 64 19 37 28 46)(2 72 11 45 20 54 29 63)(3 53 12 62 21 71 30 44)(4 70 13 43 22 52 31 61)(5 51 14 60 23 69 32 42)(6 68 15 41 24 50 33 59)(7 49 16 58 25 67 34 40)(8 66 17 39 26 48 35 57)(9 47 18 56 27 65 36 38)

G:=sub<Sym(72)| (1,25,13)(2,26,14)(3,27,15)(4,28,16)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24)(37,49,61)(38,50,62)(39,51,63)(40,52,64)(41,53,65)(42,54,66)(43,55,67)(44,56,68)(45,57,69)(46,58,70)(47,59,71)(48,60,72), (1,10,19,28)(2,11,20,29)(3,12,21,30)(4,13,22,31)(5,14,23,32)(6,15,24,33)(7,16,25,34)(8,17,26,35)(9,18,27,36)(37,64,55,46)(38,65,56,47)(39,66,57,48)(40,67,58,49)(41,68,59,50)(42,69,60,51)(43,70,61,52)(44,71,62,53)(45,72,63,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,55,10,64,19,37,28,46)(2,72,11,45,20,54,29,63)(3,53,12,62,21,71,30,44)(4,70,13,43,22,52,31,61)(5,51,14,60,23,69,32,42)(6,68,15,41,24,50,33,59)(7,49,16,58,25,67,34,40)(8,66,17,39,26,48,35,57)(9,47,18,56,27,65,36,38)>;

G:=Group( (1,25,13)(2,26,14)(3,27,15)(4,28,16)(5,29,17)(6,30,18)(7,31,19)(8,32,20)(9,33,21)(10,34,22)(11,35,23)(12,36,24)(37,49,61)(38,50,62)(39,51,63)(40,52,64)(41,53,65)(42,54,66)(43,55,67)(44,56,68)(45,57,69)(46,58,70)(47,59,71)(48,60,72), (1,10,19,28)(2,11,20,29)(3,12,21,30)(4,13,22,31)(5,14,23,32)(6,15,24,33)(7,16,25,34)(8,17,26,35)(9,18,27,36)(37,64,55,46)(38,65,56,47)(39,66,57,48)(40,67,58,49)(41,68,59,50)(42,69,60,51)(43,70,61,52)(44,71,62,53)(45,72,63,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,55,10,64,19,37,28,46)(2,72,11,45,20,54,29,63)(3,53,12,62,21,71,30,44)(4,70,13,43,22,52,31,61)(5,51,14,60,23,69,32,42)(6,68,15,41,24,50,33,59)(7,49,16,58,25,67,34,40)(8,66,17,39,26,48,35,57)(9,47,18,56,27,65,36,38) );

G=PermutationGroup([[(1,25,13),(2,26,14),(3,27,15),(4,28,16),(5,29,17),(6,30,18),(7,31,19),(8,32,20),(9,33,21),(10,34,22),(11,35,23),(12,36,24),(37,49,61),(38,50,62),(39,51,63),(40,52,64),(41,53,65),(42,54,66),(43,55,67),(44,56,68),(45,57,69),(46,58,70),(47,59,71),(48,60,72)], [(1,10,19,28),(2,11,20,29),(3,12,21,30),(4,13,22,31),(5,14,23,32),(6,15,24,33),(7,16,25,34),(8,17,26,35),(9,18,27,36),(37,64,55,46),(38,65,56,47),(39,66,57,48),(40,67,58,49),(41,68,59,50),(42,69,60,51),(43,70,61,52),(44,71,62,53),(45,72,63,54)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,55,10,64,19,37,28,46),(2,72,11,45,20,54,29,63),(3,53,12,62,21,71,30,44),(4,70,13,43,22,52,31,61),(5,51,14,60,23,69,32,42),(6,68,15,41,24,50,33,59),(7,49,16,58,25,67,34,40),(8,66,17,39,26,48,35,57),(9,47,18,56,27,65,36,38)]])

126 conjugacy classes

class 1 2A2B3A3B3C3D3E4A4B4C6A6B6C···6M8A8B8C8D9A···9I12A12B12C12D12E···12R18A···18AA24A···24H36A···36AJ
order12233333444666···688889···91212121212···1218···1824···2436···36
size11211222112112···2181818182···211112···22···218···182···2

126 irreducible representations

dim11111111112222222222222222222222
type++++-+-+-+-
imageC1C2C2C3C4C4C6C6C12C12S3Dic3D6Dic3M4(2)D9C3×S3Dic9D18C3×Dic3S3×C6Dic9C3×Dic3C3×M4(2)C4.Dic3C3×D9C3×Dic9C6×D9C3×Dic9C4.Dic9C3×C4.Dic3C3×C4.Dic9
kernelC3×C4.Dic9C3×C9⋊C8C6×C36C4.Dic9C3×C36C6×C18C9⋊C8C2×C36C36C2×C18C6×C12C3×C12C3×C12C62C3×C9C2×C12C2×C12C12C12C12C12C2×C6C2×C6C9C32C2×C4C4C4C22C3C3C1
# reps1212224244111123233223244666612824

Matrix representation of C3×C4.Dic9 in GL2(𝔽37) generated by

260
026
,
310
06
,
130
017
,
06
10
G:=sub<GL(2,GF(37))| [26,0,0,26],[31,0,0,6],[13,0,0,17],[0,1,6,0] >;

C3×C4.Dic9 in GAP, Magma, Sage, TeX

C_3\times C_4.{\rm Dic}_9
% in TeX

G:=Group("C3xC4.Dic9");
// GroupNames label

G:=SmallGroup(432,125);
// by ID

G=gap.SmallGroup(432,125);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,84,365,80,10085,292,14118]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^4=1,c^18=b^2,d^2=c^9,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^17>;
// generators/relations

׿
×
𝔽