Copied to
clipboard

G = C12×Dic9order 432 = 24·33

Direct product of C12 and Dic9

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C12×Dic9, C366C12, C62.118D6, C93(C4×C12), (C3×C36)⋊4C4, (C3×C9)⋊3C42, C2.2(C12×D9), C6.23(C4×D9), C6.11(S3×C12), (C6×C12).47S3, (C2×C36).20C6, (C6×C36).14C2, (C2×C12).22D9, (C2×C6).46D18, C6.8(C6×Dic3), C2.2(C6×Dic9), C22.3(C6×D9), C18.17(C2×C12), (C6×Dic9).9C2, (C2×Dic9).8C6, C6.19(C2×Dic9), C3.1(Dic3×C12), (C6×C18).32C22, C12.12(C3×Dic3), (C3×C12).24Dic3, C32.3(C4×Dic3), (C2×C4).6(C3×D9), (C2×C6).34(S3×C6), (C3×C6).65(C4×S3), (C2×C12).30(C3×S3), (C3×C18).20(C2×C4), (C2×C18).23(C2×C6), (C3×C6).56(C2×Dic3), SmallGroup(432,128)

Series: Derived Chief Lower central Upper central

C1C9 — C12×Dic9
C1C3C9C18C2×C18C6×C18C6×Dic9 — C12×Dic9
C9 — C12×Dic9
C1C2×C12

Generators and relations for C12×Dic9
 G = < a,b,c | a12=b18=1, c2=b9, ab=ba, ac=ca, cbc-1=b-1 >

Subgroups: 262 in 106 conjugacy classes, 62 normal (26 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C6, C6, C6, C2×C4, C2×C4, C9, C9, C32, Dic3, C12, C12, C2×C6, C2×C6, C42, C18, C18, C18, C3×C6, C3×C6, C2×Dic3, C2×C12, C2×C12, C3×C9, Dic9, C36, C36, C2×C18, C2×C18, C3×Dic3, C3×C12, C62, C4×Dic3, C4×C12, C3×C18, C3×C18, C2×Dic9, C2×C36, C2×C36, C6×Dic3, C6×C12, C3×Dic9, C3×C36, C6×C18, C4×Dic9, Dic3×C12, C6×Dic9, C6×C36, C12×Dic9
Quotients: C1, C2, C3, C4, C22, S3, C6, C2×C4, Dic3, C12, D6, C2×C6, C42, D9, C3×S3, C4×S3, C2×Dic3, C2×C12, Dic9, D18, C3×Dic3, S3×C6, C4×Dic3, C4×C12, C3×D9, C4×D9, C2×Dic9, S3×C12, C6×Dic3, C3×Dic9, C6×D9, C4×Dic9, Dic3×C12, C12×D9, C6×Dic9, C12×Dic9

Smallest permutation representation of C12×Dic9
On 144 points
Generators in S144
(1 39 76 140 13 51 88 134 7 45 82 128)(2 40 77 141 14 52 89 135 8 46 83 129)(3 41 78 142 15 53 90 136 9 47 84 130)(4 42 79 143 16 54 73 137 10 48 85 131)(5 43 80 144 17 37 74 138 11 49 86 132)(6 44 81 127 18 38 75 139 12 50 87 133)(19 112 106 68 25 118 94 56 31 124 100 62)(20 113 107 69 26 119 95 57 32 125 101 63)(21 114 108 70 27 120 96 58 33 126 102 64)(22 115 91 71 28 121 97 59 34 109 103 65)(23 116 92 72 29 122 98 60 35 110 104 66)(24 117 93 55 30 123 99 61 36 111 105 67)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 26 10 35)(2 25 11 34)(3 24 12 33)(4 23 13 32)(5 22 14 31)(6 21 15 30)(7 20 16 29)(8 19 17 28)(9 36 18 27)(37 121 46 112)(38 120 47 111)(39 119 48 110)(40 118 49 109)(41 117 50 126)(42 116 51 125)(43 115 52 124)(44 114 53 123)(45 113 54 122)(55 133 64 142)(56 132 65 141)(57 131 66 140)(58 130 67 139)(59 129 68 138)(60 128 69 137)(61 127 70 136)(62 144 71 135)(63 143 72 134)(73 98 82 107)(74 97 83 106)(75 96 84 105)(76 95 85 104)(77 94 86 103)(78 93 87 102)(79 92 88 101)(80 91 89 100)(81 108 90 99)

G:=sub<Sym(144)| (1,39,76,140,13,51,88,134,7,45,82,128)(2,40,77,141,14,52,89,135,8,46,83,129)(3,41,78,142,15,53,90,136,9,47,84,130)(4,42,79,143,16,54,73,137,10,48,85,131)(5,43,80,144,17,37,74,138,11,49,86,132)(6,44,81,127,18,38,75,139,12,50,87,133)(19,112,106,68,25,118,94,56,31,124,100,62)(20,113,107,69,26,119,95,57,32,125,101,63)(21,114,108,70,27,120,96,58,33,126,102,64)(22,115,91,71,28,121,97,59,34,109,103,65)(23,116,92,72,29,122,98,60,35,110,104,66)(24,117,93,55,30,123,99,61,36,111,105,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,26,10,35)(2,25,11,34)(3,24,12,33)(4,23,13,32)(5,22,14,31)(6,21,15,30)(7,20,16,29)(8,19,17,28)(9,36,18,27)(37,121,46,112)(38,120,47,111)(39,119,48,110)(40,118,49,109)(41,117,50,126)(42,116,51,125)(43,115,52,124)(44,114,53,123)(45,113,54,122)(55,133,64,142)(56,132,65,141)(57,131,66,140)(58,130,67,139)(59,129,68,138)(60,128,69,137)(61,127,70,136)(62,144,71,135)(63,143,72,134)(73,98,82,107)(74,97,83,106)(75,96,84,105)(76,95,85,104)(77,94,86,103)(78,93,87,102)(79,92,88,101)(80,91,89,100)(81,108,90,99)>;

G:=Group( (1,39,76,140,13,51,88,134,7,45,82,128)(2,40,77,141,14,52,89,135,8,46,83,129)(3,41,78,142,15,53,90,136,9,47,84,130)(4,42,79,143,16,54,73,137,10,48,85,131)(5,43,80,144,17,37,74,138,11,49,86,132)(6,44,81,127,18,38,75,139,12,50,87,133)(19,112,106,68,25,118,94,56,31,124,100,62)(20,113,107,69,26,119,95,57,32,125,101,63)(21,114,108,70,27,120,96,58,33,126,102,64)(22,115,91,71,28,121,97,59,34,109,103,65)(23,116,92,72,29,122,98,60,35,110,104,66)(24,117,93,55,30,123,99,61,36,111,105,67), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,26,10,35)(2,25,11,34)(3,24,12,33)(4,23,13,32)(5,22,14,31)(6,21,15,30)(7,20,16,29)(8,19,17,28)(9,36,18,27)(37,121,46,112)(38,120,47,111)(39,119,48,110)(40,118,49,109)(41,117,50,126)(42,116,51,125)(43,115,52,124)(44,114,53,123)(45,113,54,122)(55,133,64,142)(56,132,65,141)(57,131,66,140)(58,130,67,139)(59,129,68,138)(60,128,69,137)(61,127,70,136)(62,144,71,135)(63,143,72,134)(73,98,82,107)(74,97,83,106)(75,96,84,105)(76,95,85,104)(77,94,86,103)(78,93,87,102)(79,92,88,101)(80,91,89,100)(81,108,90,99) );

G=PermutationGroup([[(1,39,76,140,13,51,88,134,7,45,82,128),(2,40,77,141,14,52,89,135,8,46,83,129),(3,41,78,142,15,53,90,136,9,47,84,130),(4,42,79,143,16,54,73,137,10,48,85,131),(5,43,80,144,17,37,74,138,11,49,86,132),(6,44,81,127,18,38,75,139,12,50,87,133),(19,112,106,68,25,118,94,56,31,124,100,62),(20,113,107,69,26,119,95,57,32,125,101,63),(21,114,108,70,27,120,96,58,33,126,102,64),(22,115,91,71,28,121,97,59,34,109,103,65),(23,116,92,72,29,122,98,60,35,110,104,66),(24,117,93,55,30,123,99,61,36,111,105,67)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,26,10,35),(2,25,11,34),(3,24,12,33),(4,23,13,32),(5,22,14,31),(6,21,15,30),(7,20,16,29),(8,19,17,28),(9,36,18,27),(37,121,46,112),(38,120,47,111),(39,119,48,110),(40,118,49,109),(41,117,50,126),(42,116,51,125),(43,115,52,124),(44,114,53,123),(45,113,54,122),(55,133,64,142),(56,132,65,141),(57,131,66,140),(58,130,67,139),(59,129,68,138),(60,128,69,137),(61,127,70,136),(62,144,71,135),(63,143,72,134),(73,98,82,107),(74,97,83,106),(75,96,84,105),(76,95,85,104),(77,94,86,103),(78,93,87,102),(79,92,88,101),(80,91,89,100),(81,108,90,99)]])

144 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D4E···4L6A···6F6G···6O9A···9I12A···12H12I···12T12U···12AJ18A···18AA36A···36AJ
order12223333344444···46···66···69···912···1212···1212···1218···1836···36
size11111122211119···91···12···22···21···12···29···92···22···2

144 irreducible representations

dim11111111112222222222222222
type++++-++-+
imageC1C2C2C3C4C4C6C6C12C12S3Dic3D6D9C3×S3C4×S3Dic9C3×Dic3D18S3×C6C3×D9C4×D9S3×C12C3×Dic9C6×D9C12×D9
kernelC12×Dic9C6×Dic9C6×C36C4×Dic9C3×Dic9C3×C36C2×Dic9C2×C36Dic9C36C6×C12C3×C12C62C2×C12C2×C12C3×C6C12C12C2×C6C2×C6C2×C4C6C6C4C22C2
# reps121284421681213246432612812624

Matrix representation of C12×Dic9 in GL4(𝔽37) generated by

8000
01100
00110
00011
,
1000
03600
00160
0007
,
1000
03100
00036
00360
G:=sub<GL(4,GF(37))| [8,0,0,0,0,11,0,0,0,0,11,0,0,0,0,11],[1,0,0,0,0,36,0,0,0,0,16,0,0,0,0,7],[1,0,0,0,0,31,0,0,0,0,0,36,0,0,36,0] >;

C12×Dic9 in GAP, Magma, Sage, TeX

C_{12}\times {\rm Dic}_9
% in TeX

G:=Group("C12xDic9");
// GroupNames label

G:=SmallGroup(432,128);
// by ID

G=gap.SmallGroup(432,128);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-3,-3,84,176,10085,292,14118]);
// Polycyclic

G:=Group<a,b,c|a^12=b^18=1,c^2=b^9,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

׿
×
𝔽