# Extensions 1→N→G→Q→1 with N=C22 and Q=C3×S32

Direct product G=N×Q with N=C22 and Q=C3×S32
dρLabelID
S32×C2×C648S3^2xC2xC6432,767

Semidirect products G=N:Q with N=C22 and Q=C3×S32
extensionφ:Q→Aut NdρLabelID
C22⋊(C3×S32) = C3×S3×S4φ: C3×S32/C3×S3S3 ⊆ Aut C22246C2^2:(C3xS3^2)432,745
C222(C3×S32) = S32×A4φ: C3×S32/S32C3 ⊆ Aut C222412+C2^2:2(C3xS3^2)432,749
C223(C3×S32) = C3×S3×C3⋊D4φ: C3×S32/S3×C32C2 ⊆ Aut C22244C2^2:3(C3xS3^2)432,658
C224(C3×S32) = C3×Dic3⋊D6φ: C3×S32/C3×C3⋊S3C2 ⊆ Aut C22244C2^2:4(C3xS3^2)432,659

Non-split extensions G=N.Q with N=C22 and Q=C3×S32
extensionφ:Q→Aut NdρLabelID
C22.1(C3×S32) = C3×D6.3D6φ: C3×S32/S3×C32C2 ⊆ Aut C22244C2^2.1(C3xS3^2)432,652
C22.2(C3×S32) = C3×D6.4D6φ: C3×S32/C3×C3⋊S3C2 ⊆ Aut C22244C2^2.2(C3xS3^2)432,653
C22.3(C3×S32) = C3×Dic32central extension (φ=1)48C2^2.3(C3xS3^2)432,425
C22.4(C3×S32) = C3×D6⋊Dic3central extension (φ=1)48C2^2.4(C3xS3^2)432,426
C22.5(C3×S32) = C3×C6.D12central extension (φ=1)48C2^2.5(C3xS3^2)432,427
C22.6(C3×S32) = C3×Dic3⋊Dic3central extension (φ=1)48C2^2.6(C3xS3^2)432,428
C22.7(C3×S32) = C3×C62.C22central extension (φ=1)48C2^2.7(C3xS3^2)432,429
C22.8(C3×S32) = S3×C6×Dic3central extension (φ=1)48C2^2.8(C3xS3^2)432,651
C22.9(C3×S32) = C6×C6.D6central extension (φ=1)48C2^2.9(C3xS3^2)432,654
C22.10(C3×S32) = C6×D6⋊S3central extension (φ=1)48C2^2.10(C3xS3^2)432,655
C22.11(C3×S32) = C6×C3⋊D12central extension (φ=1)48C2^2.11(C3xS3^2)432,656
C22.12(C3×S32) = C6×C322Q8central extension (φ=1)48C2^2.12(C3xS3^2)432,657

׿
×
𝔽