Extensions 1→N→G→Q→1 with N=C6 and Q=Q8×C32

Direct product G=N×Q with N=C6 and Q=Q8×C32

Semidirect products G=N:Q with N=C6 and Q=Q8×C32
extensionφ:Q→Aut NdρLabelID
C6⋊(Q8×C32) = C3×C6×Dic6φ: Q8×C32/C3×C12C2 ⊆ Aut C6144C6:(Q8xC3^2)432,700

Non-split extensions G=N.Q with N=C6 and Q=Q8×C32
extensionφ:Q→Aut NdρLabelID
C6.1(Q8×C32) = C32×Dic3⋊C4φ: Q8×C32/C3×C12C2 ⊆ Aut C6144C6.1(Q8xC3^2)432,472
C6.2(Q8×C32) = C32×C4⋊Dic3φ: Q8×C32/C3×C12C2 ⊆ Aut C6144C6.2(Q8xC3^2)432,473
C6.3(Q8×C32) = C4⋊C4×C3×C9central extension (φ=1)432C6.3(Q8xC3^2)432,206
C6.4(Q8×C32) = C4⋊C4×He3central extension (φ=1)144C6.4(Q8xC3^2)432,207
C6.5(Q8×C32) = C4⋊C4×3- 1+2central extension (φ=1)144C6.5(Q8xC3^2)432,208
C6.6(Q8×C32) = Q8×C3×C18central extension (φ=1)432C6.6(Q8xC3^2)432,406
C6.7(Q8×C32) = C2×Q8×He3central extension (φ=1)144C6.7(Q8xC3^2)432,407
C6.8(Q8×C32) = C2×Q8×3- 1+2central extension (φ=1)144C6.8(Q8xC3^2)432,408
C6.9(Q8×C32) = C4⋊C4×C33central extension (φ=1)432C6.9(Q8xC3^2)432,514