Extensions 1→N→G→Q→1 with N=C3 and Q=D6.D6

Direct product G=N×Q with N=C3 and Q=D6.D6

Semidirect products G=N:Q with N=C3 and Q=D6.D6
extensionφ:Q→Aut NdρLabelID
C31(D6.D6) = (S3×C6).D6φ: D6.D6/D6⋊S3C2 ⊆ Aut C3248+C3:1(D6.D6)432,606
C32(D6.D6) = D6.S32φ: D6.D6/C3⋊D12C2 ⊆ Aut C3488-C3:2(D6.D6)432,607
C33(D6.D6) = Dic3.S32φ: D6.D6/C322Q8C2 ⊆ Aut C3248+C3:3(D6.D6)432,612
C34(D6.D6) = C12.73S32φ: D6.D6/S3×C12C2 ⊆ Aut C372C3:4(D6.D6)432,667
C35(D6.D6) = C12.95S32φ: D6.D6/C4×C3⋊S3C2 ⊆ Aut C3484C3:5(D6.D6)432,689

Non-split extensions G=N.Q with N=C3 and Q=D6.D6
extensionφ:Q→Aut NdρLabelID
C3.1(D6.D6) = D6.D18φ: D6.D6/S3×C12C2 ⊆ Aut C3724C3.1(D6.D6)432,287
C3.2(D6.D6) = C12.91S32φ: D6.D6/C4×C3⋊S3C2 ⊆ Aut C3726C3.2(D6.D6)432,297