metabelian, supersoluble, monomial
Aliases: D6⋊1S3, C6.3D6, C32⋊2D4, C2.3S32, (S3×C6)⋊1C2, C3⋊2(C3⋊D4), C3⋊Dic3⋊2C2, (C3×C6).3C22, SmallGroup(72,22)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D6⋊S3
G = < a,b,c,d | a6=b2=c3=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a3b, dcd=c-1 >
Character table of D6⋊S3
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 4 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | |
size | 1 | 1 | 6 | 6 | 2 | 2 | 4 | 18 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | -2 | 0 | 2 | -1 | -1 | 0 | 2 | -1 | -1 | 0 | 1 | 1 | 0 | orthogonal lifted from D6 |
ρ6 | 2 | -2 | 0 | 0 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ7 | 2 | 2 | 2 | 0 | 2 | -1 | -1 | 0 | 2 | -1 | -1 | 0 | -1 | -1 | 0 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | 0 | 2 | -1 | 2 | -1 | 0 | -1 | 2 | -1 | -1 | 0 | 0 | -1 | orthogonal lifted from S3 |
ρ9 | 2 | 2 | 0 | -2 | -1 | 2 | -1 | 0 | -1 | 2 | -1 | 1 | 0 | 0 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | 0 | 1 | -2 | 1 | -√-3 | 0 | 0 | √-3 | complex lifted from C3⋊D4 |
ρ11 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | 0 | -2 | 1 | 1 | 0 | √-3 | -√-3 | 0 | complex lifted from C3⋊D4 |
ρ12 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | 0 | -2 | 1 | 1 | 0 | -√-3 | √-3 | 0 | complex lifted from C3⋊D4 |
ρ13 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | 0 | 1 | -2 | 1 | √-3 | 0 | 0 | -√-3 | complex lifted from C3⋊D4 |
ρ14 | 4 | 4 | 0 | 0 | -2 | -2 | 1 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ15 | 4 | -4 | 0 | 0 | -2 | -2 | 1 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 19)(14 24)(15 23)(16 22)(17 21)(18 20)
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 17 15)(14 18 16)(19 21 23)(20 22 24)
(1 17)(2 18)(3 13)(4 14)(5 15)(6 16)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)
G:=sub<Sym(24)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,19)(14,24)(15,23)(16,22)(17,21)(18,20), (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,21,23)(20,22,24), (1,17)(2,18)(3,13)(4,14)(5,15)(6,16)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,19)(14,24)(15,23)(16,22)(17,21)(18,20), (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,17,15)(14,18,16)(19,21,23)(20,22,24), (1,17)(2,18)(3,13)(4,14)(5,15)(6,16)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,19),(14,24),(15,23),(16,22),(17,21),(18,20)], [(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,17,15),(14,18,16),(19,21,23),(20,22,24)], [(1,17),(2,18),(3,13),(4,14),(5,15),(6,16),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24)]])
G:=TransitiveGroup(24,61);
D6⋊S3 is a maximal subgroup of
C32⋊D8 C32⋊2SD16 D12⋊5S3 D6.D6 D6⋊D6 D6.4D6 S3×C3⋊D4 D6⋊D9 He3⋊3D4 C33⋊6D4 C33⋊9D4 D6.S4 D6⋊S4 D6⋊D15 C32⋊3D20
D6⋊S3 is a maximal quotient of
C32⋊2D8 Dic6⋊S3 C32⋊2Q16 D6⋊Dic3 C62.C22 D6⋊D9 He3⋊2D4 C33⋊6D4 C33⋊9D4 D6⋊S4 D6⋊D15 C32⋊3D20
Matrix representation of D6⋊S3 ►in GL4(𝔽5) generated by
0 | 0 | 1 | 0 |
0 | 1 | 0 | 4 |
4 | 0 | 1 | 0 |
0 | 1 | 0 | 0 |
0 | 4 | 0 | 0 |
4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 4 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
1 | 0 | 4 | 0 |
0 | 1 | 0 | 4 |
0 | 2 | 0 | 0 |
3 | 0 | 0 | 0 |
0 | 2 | 0 | 3 |
3 | 0 | 2 | 0 |
G:=sub<GL(4,GF(5))| [0,0,4,0,0,1,0,1,1,0,1,0,0,4,0,0],[0,4,0,0,4,0,0,0,0,0,0,4,0,0,4,0],[0,0,1,0,0,0,0,1,4,0,4,0,0,4,0,4],[0,3,0,3,2,0,2,0,0,0,0,2,0,0,3,0] >;
D6⋊S3 in GAP, Magma, Sage, TeX
D_6\rtimes S_3
% in TeX
G:=Group("D6:S3");
// GroupNames label
G:=SmallGroup(72,22);
// by ID
G=gap.SmallGroup(72,22);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-3,61,168,1204]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^2=c^3=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of D6⋊S3 in TeX
Character table of D6⋊S3 in TeX