# Extensions 1→N→G→Q→1 with N=C4 and Q=S3×C3×C6

Direct product G=N×Q with N=C4 and Q=S3×C3×C6
dρLabelID
S3×C6×C12144S3xC6xC12432,701

Semidirect products G=N:Q with N=C4 and Q=S3×C3×C6
extensionφ:Q→Aut NdρLabelID
C41(S3×C3×C6) = S3×D4×C32φ: S3×C3×C6/S3×C32C2 ⊆ Aut C472C4:1(S3xC3xC6)432,704
C42(S3×C3×C6) = C3×C6×D12φ: S3×C3×C6/C32×C6C2 ⊆ Aut C4144C4:2(S3xC3xC6)432,702

Non-split extensions G=N.Q with N=C4 and Q=S3×C3×C6
extensionφ:Q→Aut NdρLabelID
C4.1(S3×C3×C6) = C32×D4⋊S3φ: S3×C3×C6/S3×C32C2 ⊆ Aut C472C4.1(S3xC3xC6)432,475
C4.2(S3×C3×C6) = C32×D4.S3φ: S3×C3×C6/S3×C32C2 ⊆ Aut C472C4.2(S3xC3xC6)432,476
C4.3(S3×C3×C6) = C32×Q82S3φ: S3×C3×C6/S3×C32C2 ⊆ Aut C4144C4.3(S3xC3xC6)432,477
C4.4(S3×C3×C6) = C32×C3⋊Q16φ: S3×C3×C6/S3×C32C2 ⊆ Aut C4144C4.4(S3xC3xC6)432,478
C4.5(S3×C3×C6) = C32×D42S3φ: S3×C3×C6/S3×C32C2 ⊆ Aut C472C4.5(S3xC3xC6)432,705
C4.6(S3×C3×C6) = S3×Q8×C32φ: S3×C3×C6/S3×C32C2 ⊆ Aut C4144C4.6(S3xC3xC6)432,706
C4.7(S3×C3×C6) = C32×Q83S3φ: S3×C3×C6/S3×C32C2 ⊆ Aut C4144C4.7(S3xC3xC6)432,707
C4.8(S3×C3×C6) = C32×C24⋊C2φ: S3×C3×C6/C32×C6C2 ⊆ Aut C4144C4.8(S3xC3xC6)432,466
C4.9(S3×C3×C6) = C32×D24φ: S3×C3×C6/C32×C6C2 ⊆ Aut C4144C4.9(S3xC3xC6)432,467
C4.10(S3×C3×C6) = C32×Dic12φ: S3×C3×C6/C32×C6C2 ⊆ Aut C4144C4.10(S3xC3xC6)432,468
C4.11(S3×C3×C6) = C3×C6×Dic6φ: S3×C3×C6/C32×C6C2 ⊆ Aut C4144C4.11(S3xC3xC6)432,700
C4.12(S3×C3×C6) = S3×C3×C24central extension (φ=1)144C4.12(S3xC3xC6)432,464
C4.13(S3×C3×C6) = C32×C8⋊S3central extension (φ=1)144C4.13(S3xC3xC6)432,465
C4.14(S3×C3×C6) = C3×C6×C3⋊C8central extension (φ=1)144C4.14(S3xC3xC6)432,469
C4.15(S3×C3×C6) = C32×C4.Dic3central extension (φ=1)72C4.15(S3xC3xC6)432,470
C4.16(S3×C3×C6) = C32×C4○D12central extension (φ=1)72C4.16(S3xC3xC6)432,703

׿
×
𝔽