# Extensions 1→N→G→Q→1 with N=C22 and Q=S3×C3×C6

Direct product G=N×Q with N=C22 and Q=S3×C3×C6
dρLabelID
S3×C2×C62144S3xC2xC6^2432,772

Semidirect products G=N:Q with N=C22 and Q=S3×C3×C6
extensionφ:Q→Aut NdρLabelID
C22⋊(S3×C3×C6) = C3×C6×S4φ: S3×C3×C6/C3×C6S3 ⊆ Aut C2254C2^2:(S3xC3xC6)432,760
C222(S3×C3×C6) = S3×C6×A4φ: S3×C3×C6/S3×C6C3 ⊆ Aut C22366C2^2:2(S3xC3xC6)432,763
C223(S3×C3×C6) = S3×D4×C32φ: S3×C3×C6/S3×C32C2 ⊆ Aut C2272C2^2:3(S3xC3xC6)432,704
C224(S3×C3×C6) = C3×C6×C3⋊D4φ: S3×C3×C6/C32×C6C2 ⊆ Aut C2272C2^2:4(S3xC3xC6)432,709

Non-split extensions G=N.Q with N=C22 and Q=S3×C3×C6
extensionφ:Q→Aut NdρLabelID
C22.1(S3×C3×C6) = C32×D42S3φ: S3×C3×C6/S3×C32C2 ⊆ Aut C2272C2^2.1(S3xC3xC6)432,705
C22.2(S3×C3×C6) = C32×C4○D12φ: S3×C3×C6/C32×C6C2 ⊆ Aut C2272C2^2.2(S3xC3xC6)432,703
C22.3(S3×C3×C6) = Dic3×C3×C12central extension (φ=1)144C2^2.3(S3xC3xC6)432,471
C22.4(S3×C3×C6) = C32×Dic3⋊C4central extension (φ=1)144C2^2.4(S3xC3xC6)432,472
C22.5(S3×C3×C6) = C32×C4⋊Dic3central extension (φ=1)144C2^2.5(S3xC3xC6)432,473
C22.6(S3×C3×C6) = C32×D6⋊C4central extension (φ=1)144C2^2.6(S3xC3xC6)432,474
C22.7(S3×C3×C6) = C32×C6.D4central extension (φ=1)72C2^2.7(S3xC3xC6)432,479
C22.8(S3×C3×C6) = C3×C6×Dic6central extension (φ=1)144C2^2.8(S3xC3xC6)432,700
C22.9(S3×C3×C6) = S3×C6×C12central extension (φ=1)144C2^2.9(S3xC3xC6)432,701
C22.10(S3×C3×C6) = C3×C6×D12central extension (φ=1)144C2^2.10(S3xC3xC6)432,702
C22.11(S3×C3×C6) = Dic3×C62central extension (φ=1)144C2^2.11(S3xC3xC6)432,708

׿
×
𝔽