Extensions 1→N→G→Q→1 with N=C3 and Q=Dic3⋊D6

Direct product G=N×Q with N=C3 and Q=Dic3⋊D6

Semidirect products G=N:Q with N=C3 and Q=Dic3⋊D6
extensionφ:Q→Aut NdρLabelID
C31(Dic3⋊D6) = C3⋊S34D12φ: Dic3⋊D6/C6.D6C2 ⊆ Aut C3248+C3:1(Dic3:D6)432,602
C32(Dic3⋊D6) = (S3×C6)⋊D6φ: Dic3⋊D6/C3⋊D12C2 ⊆ Aut C3248+C3:2(Dic3:D6)432,601
C33(Dic3⋊D6) = C6223D6φ: Dic3⋊D6/C3×C3⋊D4C2 ⊆ Aut C336C3:3(Dic3:D6)432,686
C34(Dic3⋊D6) = D64S32φ: Dic3⋊D6/C2×S32C2 ⊆ Aut C3248+C3:4(Dic3:D6)432,599
C35(Dic3⋊D6) = C6224D6φ: Dic3⋊D6/C22×C3⋊S3C2 ⊆ Aut C3244C3:5(Dic3:D6)432,696

Non-split extensions G=N.Q with N=C3 and Q=Dic3⋊D6
extensionφ:Q→Aut NdρLabelID
C3.1(Dic3⋊D6) = D18⋊D6φ: Dic3⋊D6/C3×C3⋊D4C2 ⊆ Aut C3364+C3.1(Dic3:D6)432,315
C3.2(Dic3⋊D6) = C622D6φ: Dic3⋊D6/C22×C3⋊S3C2 ⊆ Aut C3366C3.2(Dic3:D6)432,324